摘要
对参数严格反馈形式的非线性系统,在含有未知方差Wiener噪声干扰下,为增进系统的稳定性,采用基于估计的模块化设计思想,研究了其跟踪问题。对方差不确定噪声抑制的控制机制,设计了具有鲁棒稳定特性的输入状态稳定控制器,确保系统满足控制器和辨识器的分离设计。应用Swapping技术,设计滤波器将动态参数模型转化为静态模型,并且运用梯度算法设计了参数自适应律。控制器与辨识器结合最终使跟踪误差在概率意义下收敛,试验证明采用方法有效。
The estimation -base modularized design was applied for the adaptive tracking problem for a class of stochastic nonlinear in the form of parametric - strict - feedback driven by Wiener noises of unknown covariance. A complete separation of controller - identifier was achieve by employing stochastic disturbance attenuation method for unknown covariance and using the ISS controller with strong parametric robustness properties. According tO Swapping technique, filters were designed to convert dynamic parametric models into static models with the update laws based on gradient algorithm. The result that the tracking error converges in sense of probability was obtained by using the controller and identifier.
出处
《计算机仿真》
CSCD
北大核心
2010年第5期145-148,161,共5页
Computer Simulation
基金
安徽高校省级自然科学研究重点项目(KJ2009A012)
合肥学院基金(RC600838)
关键词
自适应跟踪
输入-状态稳定
方差不确定
梯度算法
Adaptive tracking
Input - to - state stability
Unknown covariance
Gradient algorithm