期刊文献+

一种海洋温度和盐度的虚拟生成方法

A Kind of Virtual Implementation Method of Ocean Temperature and Salinity
下载PDF
导出
摘要 海洋温度和盐度精确仿真的主要难点是实际实验数据的获得成本高且操作不便,根据有限的实验数据对温度和盐度进行仿真,对研究它们对水下机器人声纳系统及载体控制系统的影响具有重要意义。针对UUV多水下机器人的数字仿真平台的具体工程提出了一种海洋温度和盐度的虚拟生成方法。对海洋中海水的温度和盐度分别进行仿真:水平面采用二元全区间插值方法,垂直面的仿真分为两种情况:对于已有实验数据深度范围内的温度和盐度数值采用三次样条插值,而对于未知实验数据深度范围内的温度和盐度数值采用曲线拟合的方法来近似获得,方法能适用于普遍海域的温度和盐度的虚拟生成,为研究海洋温度和盐度对海洋生物或水下工程的研究提供参考。 The main difficulty for the accurate simulation of ocean temperature and salinity is the high costs and discommodious operation for experimental data. Simulation for ocean temperature and salinity is important to the research on the influence of them on the sonar and vehicle control system of unmanned underwater vehicle based on limited experimental data. A kind of virtual implement method of temperature and salinity in the ocean environment is presented for the specific engineering application of digital simulate platform of multiple UUVs ( Unmanned Underwater Vehicles) system. In order to make this method fitting for the virtual implementation of temperature and salinity in the common sea areas, the simulation of the temperature and salinity can be adopted as follows. Using duality interpolation method in the horizontal plane. Simulation for the vertical plane can be divided as two situations: using cubic spline method for the depth when the experimental data can be obtained, and using curve fitting method for the depth when experimental data can not be obtained or unknown. This method has offered a reference for the research on the influence of ocean temperature and salinity on the marine biology or underwater engineering and has been applied in the digital multiple UUVs simulate platform and has been validated at present.
出处 《计算机仿真》 CSCD 北大核心 2010年第5期239-242,共4页 Computer Simulation
基金 国家863高科技发展计划资助项目(2006AA04Z262) 国家自然科学基金资助项目(60775061)
关键词 二元全区间插值 三次样条插值 曲线拟合 多水下机器人数字仿真平台 Duality interpolation Cubic spline Curve fitting Multiple UUVs
  • 相关文献

参考文献6

二级参考文献26

  • 1联合国教科文组织 汪德元(译).海水基本特性计算方法[M].北京:国家海洋资料中心出版社,1987..
  • 2Nokin M, Soltwedel T, Klages M(2000): Deployment of the deep sea ROV VICTOR 6000 from board the German research Icebreaker POLARSTERN in Polar Regions, OCEANS 2000 MTS/IEEE Conference and Exhibition, Vol. 2,943-947.
  • 3Deffenbaugh M, Schmidt H and Bellinghan JG( 1993 ): Acoustic Navigation for Arctic Under-Ice AUV Missions, OCEANS 93Engineering in Harmony with Ocean Proceedings, Vol. 1, I204-I209.
  • 4Tamura K, Aoki T, Nakamura T et al. (2000): The Development of the AUV-URASHIMA, OCEANS 2000 MTS/IEEE Conference and Exhibition, Vol. 1, 139-146.
  • 5Bahlavouni A, Andersen D and Stein P(2001 ): Ice Penetrating Communication Buoy for Underwater Vehicles Operating in the Arctic, OCEANS, 2001 MTS/IEEE Conference and Exhibition, Vol. 3, 1500-1503.
  • 6Ferguson JS(1998): The Theseus Autonomous Underwater Vehicle Two Successful Missions, Proceedings of the 1998 International Symposium, 109-114.
  • 7Ota JM, Kitts CA, Bates J and Weast A( 1999): From Mars to Marine Archaeology: A Report on the Jeremy Project,OCEANS 99 MTS/IEEE Riding the Crest into the 21st Century, Vol. 2,767-773.
  • 8Stevenson P, Eng E, Mehce MI (1996): Development of Reliable Sub Systems for Autosub, OCEANS ′96 MTS/IEEE′rospects for the 21 st Century Conference Proceedings, Vol. 2, 711-716.
  • 9Shen Y M,Sci China,1996年,39卷,4期,342页
  • 10倪浩清,工程湍流流动、传热及传质的数值模拟,1996年,1页

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部