期刊文献+

基于时序分析的微弱表情识别方法 被引量:1

Micro-Expression Recognition Framework Using Time Series Analysis
原文传递
导出
摘要 依赖现有夸张的表情图像序列数据库,将微弱表情看成是整个夸张表情图像序列中的前面一段,提出基于时序分析的微弱表情识别方法.首先融合二值图像和灰度图像序列的光流运动场,提取眉毛、鼻子和嘴巴的动作方向及强度共5维特征序列.接着采用夸张表情特征序列训练隐马尔科夫模型(HMM),分析特征序列与夸张表情的关系.通过HMM前向学习识别微弱表情序列.同时采用Boosting算法提高识别精度.在Cohn Kanade表情数据库上进行实验验证,取得较好的实验效果. Relying on existing exaggerated expression video database and micro-expression being regarded as former part of exaggerated expression image series, a micro-expression recognition framework based on time series analysis is presented. Firstly, five dimensions feature series, action direction and intensity rate of eyebrows, nose and mouth, are extracted by fusing optical flow field of binary videos and gray ones. Secondly, hidden Markov models are trained by adopting exaggerated expression feature series, the relationship being analyzed between feature series and exaggerated expressions. Finally, these models are used to predict the variety trend of micro-expressions and recognize them and employed to increase recognition Kanade facial expression database accuracy. The effectiveness of the and a preferable experiment result is boosting algorithm is approach is evaluated on Cohn obtained.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第2期148-153,共6页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2008AA01Z122) 安徽省自然科学基金项目(No.070412056)资助
关键词 微弱表情识别 时序分析 动作方向 动作强度 隐马尔科夫模型(HMM) Micro-Expression Recognition, Time Series Analysis, Action Direction, Action Intensity,Hidden Markov Models (HMM)
  • 相关文献

参考文献10

  • 1Zeng Zhihong,Pantic M,Roisman G I,et al.A Survey of Affect Recognition Methods:Audio,Visual,and Spontaneous Expressions.IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(1):39-58.
  • 2Fasel B,Luettin J.Automatic Facial Expression Analysis:A Survey.Pattern Recognition,2003,36 (1):259 -275.
  • 3何良华,邹采荣,包永强,赵力.人脸面部表情识别的研究进展[J].电路与系统学报,2005,10(1):70-75. 被引量:17
  • 4王志良,刘芳,王莉.基于计算机视觉的表情识别技术综述[J].计算机工程,2006,32(11):231-233. 被引量:12
  • 5刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 6Pantic M,Rothkrantz L.Expert System for Automatic Analysis of Facial Expression.Image Vision Computing,2000,18 (11):881 -905.
  • 7Zhen Wen,Huang T S.Capturing Subtle Facial Motions in 3 D Face Tracking//Proc of the 9th IEEE International Conference on Computer Vision.Nice,France,2003,Ⅱ:1343 -1350.
  • 8Horn B K P,Shunck B G.Determining Optical Flow.Artificial Intelligence,1981,17:185 -203.
  • 9Cappe O,Moulines E,Ryden T.Inference in Hidden Markov Models.New York,USA:Springer,2005.
  • 10Freund Y.Boosting a Weak Learning Algorithm by Majority.Informarion and Computation,1995,121 (2):256 -285.

二级参考文献100

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2Havran C, et al. Independent Component Analysis for face authentication [A]. KES'2002 proceedings- knowledge-based intelligent Information and Engineering Systems [C]. Crema (Italy), 2002-09. 1207-1211.
  • 3Donato Gianluca, et al. Classifying Facial Actions [J]. IEEE TRANSACTIONS ON PAMI., 1999-10, 21(10).
  • 4Lavagetto Fabio, Pockaj Roberto. An Efficient Use Of MPGE-4 FAP Interpolation for Facial Animation at 70 bits/Frame [J]. IEEE TRANSACTIONS ON CHIRCUITS AND SYSTEMS FOR VIDEO TECHINOLOGY,. 2001-10, 11(10).
  • 5Brunelli Roberto, Poggio Tomaso. Face Recognition: Feature versus Templates [J]. IEEE TRANSATIONS ON PAMI., 1993-10, 15(10).
  • 6Cootes Timothy F, Edwards Gareth J, et al. Active Appearance Models [J]. IEEE TRANSACTIONS ON PAMI., 2001-06, 23(6).
  • 7Essa Irfan A. Coding, Analysis, Interpretation, and recognition of Facial Expressions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997-07, 19(7): 757-763.
  • 8Sarris Nikos, Michael Nikos Grammalidis. Gerassimos Strintzis FAP Extraction Using Three-Dimensional Motion Estimation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002-10, 12(10): 865-876.
  • 9KUO Chung J, Huang Ruey Song, Lin Tsang Gang. 3-D Facial Modal Estimation From Single Front -View Facial Image [J]. IEEE TRANSACTIONS. ON CHIRCUITS AND SYSTEMS FOR VIDEO TECHINOLOGY, 2002-03, 12(3).
  • 10Lavagetto Fabio, Pockaj Roberto. An Efficient Use Of MPGE-4 FAP Interpolation for Facial Animation at 70 bits/Frame [J]. IEEE TRANSACTIONS. ON CHIRCUITS AND SYSTEMS FOR VIDEO TECHINOLOGY, 2001-10, 11(10).

共引文献85

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部