期刊文献+

产纤维素体菌厌氧降解纤维素制乙醇的研究进展 被引量:5

Research Progress in Anaerobic Degradation of Cellulose and the Subsequent Ethanol Production by Cellulosome-producing Bacteria
原文传递
导出
摘要 纤维素(植物细胞壁的主要成分)是自然界最丰富的一种可再生资源,但是极难降解利用。纤维素体是一种多酶复合体,能够高效降解纤维素,降解产物能够被某些厌氧微生物利用发酵产乙醇。综述了近年来产纤维素体菌厌氧降解纤维素制乙醇的研究进展,报道了纤维素体结构和功能、重组设计型纤维素体、代谢工程、混菌培养等研究方向的最新成果和思路,并对其前景作了展望。可以预期,随着研究的深入,生物质制乙醇必将日益显示出其强大的市场竞争力。 Cellulose, the main structural component of plant cell walls, is the most abundant renewable resource in nature, but it is extremely difficult to be degraded. Cellulosome is a multienzyme complex that can efficiently degrade cellulose and the degradation products can be used by some anaerobic microorganisms to produce ethanol. Recent research status in anaerobic degradation of cellulose for ethanol production by cellulosome-producing bacteria was reviewed in this paper. The latest achievements and research development in cellulosomes’ structure and function, designer cellulosomes, metabolic engineering and co-culture of cellulosome producing microorganisms were also summarized. It is expected that the development of new cellulose degrading microorganisms and relative technology will further cut the cost of cellulosic ethanol in the near future and make it more competitive with gasoline.
出处 《微生物学通报》 CAS CSCD 北大核心 2010年第5期732-737,共6页 Microbiology China
基金 国家自然科学基金项目(No.20876141)
关键词 纤维素 生物乙醇 纤维素体 代谢工程 混菌培养 Cellulose Bioethanol Cellulosomes Metabolic engineering Mixed-culture
  • 相关文献

参考文献31

  • 1Lynd LR. Overview and evaluation of fuel ethanol production from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ, 1996(21): 403-465.
  • 2Lynd LR, vanZyl WH, McBride JE, et al. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol, 2005, 16(5): 577-583.
  • 3Lamed R, Setter E, Bayer EA. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol, 1983,156(2): 828-836.
  • 4Bayer EA, Lamed R, White BA, et al. From cellulosomes to cellulosomics. The Chemical Record, 2008, 8(6): 364-377.
  • 5Jindou S, Kajino T, Inagaki M, et aL Interaction between a type-II dockerin domain and a type-II cohesin domain from Clostrium thermocellum cellulosomes. Bioscience, Biotechnology, and Biochemistry, 2004, 68(4): 924-926.
  • 6Leibovitz E, Beguin E A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol, 1996, 178(11): 3077-3084.
  • 7Dror TW, Morag E, Rolider A, et al. Regulation of the cellulosomal eelS (ee148A) gene of Clostridium thermocellum is growth rate dependent. J Bacteriol, 2003, 185(10): 3042-3048.
  • 8Bayer EA, Morag E, Lamed R. The cellulosome--a treasure trove for biotechnology. Trends Biotechnol, 1994, 12(9): 379-386.
  • 9Ohmiya K, Sakka K, Kimura T, et al. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. J Biosci Bioeng, 2003, 95(6): 549-561.
  • 10Fierobe HP, Bayer EA, Tardif C, et al. Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem, 2002, 277(51): 49621-49630.

同被引文献103

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部