摘要
证明了,若ai,bi(i=0,1,2)皆为x1、x2的三次连续可微函数,a2b1-a1b2≠0,A=a0+a1D1+a2D2,B=b0+b1D1+b2D2,Di=xi,i=1,2,则必存在线性偏微分算子C、D,满足AC=BD,并给出了C、D的计算公式。
This paper proves, if a i,b i (i=0,1,2) are functions of x 1、x 2, whose differentials of order 3 are continuous, a 2b 1-a 1b 2≠0,A=a 0+a 1D 1+a 2D 2,B=b 0+b 1D 1+b 2D 2,D i= x i, i=1,2, then there must exist linear partial diffrential operotors C、D, satisfging AC=BD, and the calculation formulas of C、D are given.
出处
《青岛大学学报(工程技术版)》
CAS
1999年第1期56-60,共5页
Journal of Qingdao University(Engineering & Technology Edition)
关键词
线性
变系数
一般解
偏微分方程组
一阶
linear
variable coefficients
partial differential operators
equations
seneral solutions