期刊文献+

Alcalase酶解7S富集组分及酶解产物的功能特性 被引量:5

7S-Rich Fractions Hydrolyzed by Alcalase and Functional Properties of the Hydrolysates
下载PDF
导出
摘要 采用Alcalase对β-伴球蛋白(7S)富集组分进行了酶解处理,通过对酶解产物溶解性、乳状液粒度分布和热诱导凝胶特性的研究,探讨了不同水解度(DH)对产物功能特性的影响.结果表明:酶解初期(酶解30min内,DH<7.69%)是影响7S富集组分功能特性的关键阶段,DH为4.53%时,酶解产物的溶解性、乳化性和凝胶性显著改善,中性条件下溶解性提高27.3%,相应的乳状液体积平均粒径减少至0.936μm,仅为7S富集组分乳状液的4.55%,弹性模量增加了158.15%;DH进一步增大,酶解产物的乳化性和凝胶性反而下降. Soy β-conglycinin-rich(7S-rich) fractions were hydrolyzed by alcalase,and the hydrolysates were investigated in terms of solubility,droplet size distribution of emulsion and heat-induced gelling properties.Moreover,the effect of the degree of hydrolysis(DH) on the functional properties of the hydrolysates was discussed.The results show that(1) the initial stage of enzymolysis,namely,the stage in the first 30min with a DH lower than 7.69%,constitutes a key stage for the formation of the functional properties of 7S-rich fractions;(2) at a DH of 4.53%,the solubility,emulsion activity and gelling property of the hydrolysates improve significantly;(3) at a DH of 4.53% and a pH value of 7.0,the solubility and elastic modulus improve by 27.3% and 158.15%,respectively,while the average droplet diameter of emulsions stabled by hydrolysates decreases to 0.936μm,which is only 4.55% of that of emulsions stabled by 7S-rich fractions;and(4) with the further increase in DH,both the emulsion activity and the gelling property show a downward trend.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期45-49,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(20676044) 国家"863"计划项目(2006AA10326)
关键词 β-伴球蛋白 富集组分 酶解 溶解性 粒度分布 凝胶特性 β-conglycinin enrichment fraction enzymolysis solubility droplet size distribution gelling property
  • 相关文献

参考文献16

  • 1Wu S,Murphy P A,Johnson L A,et al.Pilot-plant fractio-nation of soybean glycinin and β-conglycinin[J].Journal of American Oil Chemists Society,1999,76:285-293.
  • 2Rickert D A,Johnson L A,Murphy P A.Functional pro-perties of improved glycinin and beta-conglycinin fractions[J].Journal of Food Science,2004,69:303-311.
  • 3Nicolas A D,Patricia A M,Lawrence A J.Characterization of fractionated soy proteins produced by a new simplified procedure[J].Journal of American Oil Chemists Society,2007,84:137-149.
  • 4Kazunobu T,Tsutomu S,Keisuke T,et al.Functional properties of soy protein hydrolysates obtained by selective proteolysis[J].LWT,2005,38:255-261.
  • 5Mahmoud M I.Physicochemical and functional properties of protein hydrolysates in nutritional products[J].Food Technology,1994,48(10):89-95.
  • 6Dinakar P,Arun K.Enhancing the functionality of food proteins by enzymatic Modification[J].Trends in Food Science & Technology,1996,4(7):120-125.
  • 7Laemmli U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227:680-685.
  • 8Adler-Nissen J.Enzymatic hydrolysis of food proteins[M].London:Elsevier Applied Science Publishers,1986:116-124.
  • 9Lowry O H,Rosebrough N J,Farr A L,et al.Protein measurement with the Folin-phenol reagent[J].Journal of Biological Chemistry,1951,193:265-268.
  • 10Thanh V H,Shibasaki K.β-Conglycinin from soybean proteins:isolation and immunological and physicochemical properties of the monomeric forms[J].Biochim.Bi-ophys.Acta,1977,490:370-384.

同被引文献55

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部