期刊文献+

随机分组抽样下流大小的分布估计 被引量:1

Estimation of Flow Size Distribution During Random Packet Sampling
下载PDF
导出
摘要 为提高流大小分布估计的精度,比较了运用TCP流的SYN包和TCP序列号信息的几种极大似然估计(MLE)算法.结果表明,运用TCP流中的SYN包和SEQ信息对流大小的分布估计比单纯的抽样估计具有更高的准确性,其中在样本流中同时运用SYN包和SEQ信息的估计效果最佳.在此基础上结合实际提出了一种对小流采取细粒度、对大流采取粗粒度的流大小非均匀粒度分布估计算法,并以实例验证了该方法的适用性.结果表明,该方法在减少算法计算量的情况下,提高了对大流的估计精度. In order to improve the estimation accuracy of flow size distribution,several maximum likelihood estimate(MLE) algorithms using SYN flag information and TCP sequence numbers are compared.The results show that the algorithms using SYN flag and SEQ information in TCP flow,especially the algorithm using both SYN flag and SEQ sequence numbers,are more accurate than the simple sampling estimation.Then,a nonuniform grained estimation algorithm of flow size is proposed,which implements the estimation with fine-grained estimators for the flow with small size and coarse-grained ones for the flow with large size.Case study demonstrates that the proposed algorithm is applicable and greatly improves the estimation accuracy of large-size flow with less computation.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期162-166,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"973"计划项目(2009CB320505)
关键词 分组抽样 流大小 分布估计 网络测量 packet sampling flow size distribution estimation network measurement
  • 相关文献

参考文献10

  • 1Abhishek K,Minho S,Jun Xu,et al.Data streaming algorithms for efficient and accurate estimation of flow size distribution[C]∥Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems.New York:ACM,2004:177-188.
  • 2Nick D,Carsten L,Mikkel T.Estimating flow distributions from sampled flow statistics[J].IEEE/ACM Transactions on Networking,2005,13(5):933-946.
  • 3Bruno R,Don T,Tao Ye,et al.Fisher information on sampled packets:an application to flow size estimation[C]∥Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement.Riode Janeiro:ACM,2006:15-26.
  • 4Bruno R,Tao Ye,Don T.A resource-minimalist flow size histogram estimator[C]∥Proceeding of the 8th ACM SIGCOMM Conference on Internet Measurement.Vouliagmeni:ACM,2008:285-290.
  • 5Cisco.Random sampled netflow[EB/OL].San Jose:Cisco,[2005-05-01].http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/nfstatsa.html.
  • 6Peter Phaal.A method for monitoring traffic in switched and routed networks[EB/OL].San Francisco:Peter Phaal,[2001-09-01].http://www.rfc-editor.org/rfc/rfc3176.txt.
  • 7Nicolas H,Darryl V.Inverting sampled traffic[J].IEEE/ACM Transactions on Networking,2006,13(1):68-80.
  • 8Nick G D,Carsten L,Mikkel T.Learn more,sample less:control of volume and variance in network measurement[J].IEEE Transactions in Information Theory,2005,51(5):1756-1775.
  • 9Paul T,Darryl V.Towards optimal sampling for flow size estimation[C]∥Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement.Vouliagmeni:ACM,2008:243-256.
  • 10NLANR.Leipzig-Ⅱ Trace Data[EB/OL].San Diego:NLANR,[2003-02-01].http://pma.nlanr.net/Special/leip2.html.

同被引文献7

  • 1Bro[CP/OL]. [-2010-03-16]. http://www, bro ids. org.
  • 2Ribeiro B, Towsley D, Ye T, et al. Fisher Information on Sampled Packets An Application to Flow Size Estimatian [C] // Proc of ACM/SIGCOMM Internet Measurement, 2006 : 15-26.
  • 3Paxson V. Bro: a System for Detecting Network Intruders in Real-Time[J]. Computer Networks, 1999, 31(23-24) :2435- 2463.
  • 4Mai Jianning, Ashwin S, Chuah Chen-Nee, et al. Impact of Packet Sampling on Portscan Anomaly Detection[J]. IEEE Journal on Selected Areas of Communications Special Issue on Sampling the Internet, 2006, 24(12):2285-2298.
  • 5Mai Jianning, Chuah Chen-Nee, Ashwin S, et al. Is Sampled Data Sufficient for Anomaly Detection? [C]//Proc of the 6th ACM SIGCOMM Conference on Internet Measurement, 2006 : 165-176.
  • 6Jung J, Paxson V, Berger A, et al. Fast Portscan Detection Using Sequential Hypothesis Testing [C] //Proc of 2004 IEEE Symposium on Security and Privacy, 2004: 211-225.
  • 7Ne*work Mapper[CP/OL]. [2010-08-16]. http://www. in- secure, org/nmap.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部