期刊文献+

基于加权谱分析的用户网络社团协作推荐方法 被引量:3

A collaborative recommendation method based on user network community with weighted spectral analysis
下载PDF
导出
摘要 推荐技术是解决信息过载的一种有效方法.为将纷杂的网络世界中人的行为和信息服务粘合在一起,提出了基于网络社团的协作推荐方法.利用加权谱分析提高特征向量的社团划分贡献度,充分考虑社团内用户的评价风格,将社团内用户的评价值依照用户评价偏好进行了均一化处理,最后按项目相似度对目标项目的评价进行预测.实验结果表明该方法具有较好的推荐性能. Recommendation technology is an effective technology to alleviate the problem of ″information overload″. To agglutinate human's network behavior and network information service,a novel collaborative recommendation method based on network community was presented,which promoted the contribution of community division by weighting eigenvector of user network. As user's rating style is taken into consideration,an approach to normalize the user's rating values is proposed,and the rating based on item similarity within the same user community is predicted. The experimental results indicate that the method can achieve better recommendation performance.
作者 刘继 邓贵仕
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第3期438-443,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(70671016 70972059 重大项目70890080 70890083)
关键词 协作推荐 复杂网络 网络社团 加权谱分析 偏好 collaborative recommendation complex network network community weighted spectral analysis preference
  • 相关文献

参考文献21

  • 1GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry [J]. Communications of the ACM, 1992, 35(12) :61-67.
  • 2BREESE J, HECHERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering [C] // Proceedings of Uncertainty in Artificial Intelligence (UAI-98). Madison: [s n], 1998.
  • 3AGGARWAL C C, WOLF J L, WU K, etal. Horting hatches an egg:A new graph-theoretic approach to collaborative filtering [C] // Proceedings of the 5^th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 1999:201-212.
  • 4KONSTAN J, MILLER B, MALTZ D, et al. GroupLens:Applying collaborative filtering to Usenet News [J]. Communications or the ACM, 1997, 40(3) : 77-87.
  • 5SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithm [C] // Proceedings of the 10th International World Wide Web Conference. New York:ACM Press, 2001:285-295.
  • 6SCHEIN A I, POPESCUL A, UNGAR L H, et al. Methods and metrics for eold-start recommendations[C] // Proceeding of the 25^th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). New York:ACM Press, 2002 : 253-260.
  • 7邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 8刘继,邓贵仕.基于最近邻评价矩阵的混合协同过滤推荐算法[J].情报学报,2007,26(6):808-812. 被引量:7
  • 9张海燕,丁峰,姜丽红.基于模糊聚类的协同过滤推荐方法[J].计算机仿真,2005,22(8):144-147. 被引量:25
  • 10AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences:an International Journal, 2008, 178 (1) : 37-51.

二级参考文献29

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3孙雨,张霞,丛枫,张谊岩,刘积仁.基于P2P网络的协同过滤推荐算法的研究与实现[J].小型微型计算机系统,2006,27(3):417-421. 被引量:2
  • 4陈华月,余刚,朱征宇.基于加权关联规则的用户关注项目推荐算法[J].计算机工程,2006,32(6):86-88. 被引量:4
  • 5Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 6Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 7Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 8Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 9Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.

共引文献576

同被引文献28

  • 1刘常昱,胡晓峰,司光亚,罗批.基于小世界网络的舆论传播模型研究[J].系统仿真学报,2006,18(12):3608-3610. 被引量:80
  • 2Lazer D, Pentland A, Adamic L.et al. Computational Social Science [ J ]. Science, 2009, (5915 ) :721 - 723.
  • 3Grabowski A. Opinion Formation in a Social Network: The Role of Human Activity [ J]. Physica A ,2009, (6) :961 - 966.
  • 4Lu Linyuan, Chen Duanbing, Zhou Tao. The Small World Yields the Most Effective Information Spreading[J]. New J Phys,2011, ( 13 ).
  • 5Albert - Lszl Barabsi, Rka Albert. Emergence of Scaling in Random Networks[ J ]. Science, 1999, ( 15 ) :509 - 512.
  • 6Gonzalez M C, Hidalgo C A, Barab6si A L. Understanding Individual Human Mobility Patterns [ J]. Nature,2008, (7196) :779 -782.
  • 7MASSA P, BHATTACHARJEE B. Using trust in recommender systems: an experimental analysis [C] ∥ Proceedings of the 2nd International Conference on Trust Management. Berlin, Germany: Springer-Verlag, 2004, : 221-235.
  • 8GOLBECK J. Personalizing applications through integration of inferred trust values in semantic web-based social networks [C] ∥ Proceedings of Workshop on Semantic Network Analysis. Tilburg, Netherlands: Sun SITE Central Europe CEUR-WS, 2005: 1`5-28.
  • 9MASSA P, AVESANI P. Trust metrics on controversial users: balancing between tyranny of the majority and echo chambers[J].Semantic Web and International System, 2007, 3(1): 39-64.
  • 10JAMALI M, ESTER M. Trustwalker: a random walk model for combining trust-based and item-based recommendation [C] ∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 397-406.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部