摘要
推荐技术是解决信息过载的一种有效方法.为将纷杂的网络世界中人的行为和信息服务粘合在一起,提出了基于网络社团的协作推荐方法.利用加权谱分析提高特征向量的社团划分贡献度,充分考虑社团内用户的评价风格,将社团内用户的评价值依照用户评价偏好进行了均一化处理,最后按项目相似度对目标项目的评价进行预测.实验结果表明该方法具有较好的推荐性能.
Recommendation technology is an effective technology to alleviate the problem of ″information overload″. To agglutinate human's network behavior and network information service,a novel collaborative recommendation method based on network community was presented,which promoted the contribution of community division by weighting eigenvector of user network. As user's rating style is taken into consideration,an approach to normalize the user's rating values is proposed,and the rating based on item similarity within the same user community is predicted. The experimental results indicate that the method can achieve better recommendation performance.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2010年第3期438-443,共6页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(70671016
70972059
重大项目70890080
70890083)
关键词
协作推荐
复杂网络
网络社团
加权谱分析
偏好
collaborative recommendation
complex network
network community
weighted spectral analysis
preference