期刊文献+

线性移位寄存器在安全RSA模数中应用的研究

Research on secure RSA modulus based on linear feedback shift register applications
下载PDF
导出
摘要 运用线性移位寄存器(LFSR)序列模2个不同素数时的周期一般不同这一性质,尝试构造分解另一类RSA模数的方法;指出对于RSA模数n=pq的一个素因子p,当p2+p+1,p3+p2+p+1,…其中之一仅含有小的素因子时,给出的算法能够分解合数n=pq,并给出了一个基于三级LFSR分解合数的实例来说明算法的具体运算步骤。根据该分解算法,在选取RSA模数时,为确保安全性,除避免已知的不安全因素以外,还需要保证n的素因子p满足p2+p+1,p3+p2+p+1,…均包含大的素因子。 The periods of linear feedback shift register(LFSR) sequence modulo different primes were distinct in general.Using this property,a family of methods for factoring RSA modulus was constructed.For the RSA modulus n = pq,if the prime p satisfies that one of p^2+p+1,p^3+p^2+p+1,…was composed of small primes factors,it proposed a method for factorizing the composite integer n=pq.An instance was proposed to illustrate the specific procedure of the proposed factoring algorithm.Based on this factoring algorithm,to make security assurance in selecting RSA modulus,and in addition to avoid the already known insecure factors,one should also make sure that the prime factor p of n must satisfy that each of the p^2+p+1,p^3+p^2+p+1,…include a large prime factor.
出处 《通信学报》 EI CSCD 北大核心 2010年第5期135-140,共6页 Journal on Communications
基金 中国博士后科学基金资助项目(20060400035) 国家自然科学基金资助项目(60672102 60473027 60963624) 国家重点基础研究发展计划("973"计划)基金资助项目(2003AA144150) 国家"211"工程学科建设基金资助项目 2009年度北京市文化创意产业发展专项基金资助项目~~
关键词 LFSR 素数 整数分解 安全RSA模数 LFSR prime number integer factorization secure RSA modulus
  • 相关文献

参考文献14

  • 1RIVEST R,SHAMIR A,ADLEMAN L.A method for obtaining digi-tal signatures and public-key cryptosystems[J].Comm of the ACM,1978,21(2):120-126.
  • 2SMITH P,LENNON M.LUC:a new public-key system[A].Proceed-ing of IFIP/Sec'93[C].1994.103-117.
  • 3KOYAMA K,MAURER U,OKAMOTO T,et al.New public-key schemes based on elliptic curves over the ring Zn[A].Advances in Cryptology-Crypto'91[C].Springer-Verlag,1992.252-266.
  • 4姜正涛,伍前红,王育民.关于DH密钥的多项式转化与比特安全性分析[J].通信学报,2004,25(12):30-39. 被引量:2
  • 5POLLARD J M.Theorem on factorizafion and pnreality testing[A].Proc Cambridge Philos Soc[C].1974.521-528.
  • 6WILLIAMS H C.Ap+l method of factoring[J].Math of Computation,1982,39(159):225-234.
  • 7BACH E,SHALLT J.Factoring with cyclotomic polynomials[J].Mathematics of Computation,1989,52(185):201-219.
  • 8GYSIN M,SEBERRY J.Generalized cycling attacks on RSA and strong RSA primes[A].Information Security and Privacy,ACISP'99[C].Springer-Verlag,1999.149-163.
  • 9GYSIN M.The discrete logarithm problem for lucas sequences and a new class of weak RSA moduli[A].ICISC'98[C].1998.201-209.
  • 10EDWARDS H M.Galois Theory[M].New York:Spring-Verlag,1984.6-13.

二级参考文献19

  • 1DIFFIE W, HELLMAN M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644-654.
  • 2SMITH P J, LENNON M. LUC: a new public key system[A]. Proceedings of the IFIP TC1 1 Ninth International Conference on Information Security IFIP/Sec93[C]. North-Holland, Amsterdam, 1993. 103-117.
  • 3TESKE E. Speeding up pollard's rho method for computing discrete logarithms[A]. Proceedings of ANTS ⅢⅢ, LNCS 1423[C]. Berlin:Springer-Verlag, 1998.541-553.
  • 4COPPERSMITH D, SHPARLINSKI I E. On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping[J].J Cryptology, 2000, 13(3): 339-360.
  • 5LENSTRA A K, VERHEUL E R. The XTR public key system[A]. Advances in Cryptography-CRYPTO'02, LNCS 1880[C]. Berlin:Springer-Verlag, 2000. 1-19.
  • 6LIM S, SEUNGJOO. Comment on a signature scheme based on the third order LSRR[A]. ACISP2001, INDOCRYPT 2001, LNCS 2247[C]. Berlin: Springer-Verlag, 2001. 308-315.
  • 7NEAL KOBLITZ. Constructing Curve cryptosystems[J]. Math of Computation, 1987, 48(177): 203- 209.
  • 8MILLER V. Uses of elliptic curves in cryptography[A]. Advances in Cryptography-CRYPTO'85, LNCS 218[C]. Berlin:Springer-Verlag, 1985.412-426.
  • 9HOSTEIN J, PIPHER J, SILVERMAN J H. NTRU: a ring based public key cryptosystem[A]. ANTS'97, LNCS 1423[C]. Berlin:Springer-Verlag, 1998.267-288.
  • 10BONEH D, VENKATESAN R. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes[A]. Advances in Cryptography-Crypto'96, LNCS1109[C]. Berlin: Springer-Verlag, 1996. 129-142.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部