期刊文献+

交换环上的极大性内射模 被引量:22

Max-injective Modules over Commutative Rings
下载PDF
导出
摘要 设R是交换环,■表示R的极大理想生成的乘法系,M是R-模.若对R的任何极大理想m,有ExtR1(R/m,M)=0,则M称为极大性内射模.若R自身为极大性内射模,则R称自极大性内射环.若对J∈■,x∈M,由Jx=0能推出x=0,则M称为■-无挠模.证明了在Dedekind整环上,M是极大性内射模当且仅当M是内射模.指出若R的极大理想都是有限生成的,则每个■-无挠模存在极大性内射包络.还证明了若R是■-无挠的自极大性内射模,则自反模是极大性内射模,且非极大素理想都是极大性内射模;若还有R的每个极大理想是有限生成的,则自由模与投射模是极大性内射模.最后,证明了在MFG整环上,平坦模是极大性内射模. Let R be a commutative ring and be the multiplicative system generated by maximal ideals of R.An R-module M is called max-injective if Ext1R(R/m,M)=0 for every maximal ideal m of R.A ring R is called self max-injective if R is max-injective.M is called -torsion-free if Jx=0 for J∈ and x∈M implies x=0.It is shown in this paper that if R is a Dedekind domain,then M is max-injective if and only if M is injective and that if every maximal ideal of R is finitely generated,then -torsion-free modules have the max-injective hulls.It is also shown that if R is an -torsion-free self max-injective ring,then reflexive modules and non-maximal prime ideals are max-injective;moreover,if every maximal ideal of R is finitely generated,then projective modules are max-injective.Finally,it is shown that flat modules over MFG domains are max-injective.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期277-285,共9页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10671137) 教育部博士点专项科研基金(20060636001)资助项目
关键词 ■-无挠模 极大性内射模 自极大性内射环 -torsionfree max-injective modules self max-injective ring
  • 相关文献

参考文献11

  • 1Nicholson W K,Yousif M F.Principally injective rings[J].J Algebra,1995,174:77-93.
  • 2徐龙玉,宋晖.关于fann-内射模[J].四川师范大学学报(自然科学版),2009,32(4):443-446. 被引量:5
  • 3Xue W M.A note on perfect self-injective rings[J].Commum Algbra,1996,24:749-755.
  • 4Wang Ming-yi,Zhao Guo.On maximal injectivity[J].Acta Mathematical Sinica,2005,21(1):1451-1458.
  • 5赵国,汪明义.关于极大内射性的注记(英文)[J].四川大学学报(自然科学版),2005,42(5):859-866. 被引量:9
  • 6Kaplansky I.Commutative Rings[M].Chicago:Univ Chicago Press,1974.
  • 7Rotman J J.An Introduction to Homological Algebra[M].2nd.New York:Springer-Verlag,1988.
  • 8Anderson F W,Fuller K R.Rings and Categories of Module[M].New York:Springer-Verlag,1992.
  • 9Glaz S.Commutative Coherent Rings[M].New York:Springer-Verlag,1989.
  • 10陈幼华,王芳贵,尹华玉.关于PVMD的一些刻画[J].四川师范大学学报(自然科学版),2008,31(1):18-21. 被引量:7

二级参考文献40

  • 1李珊珊,汪明义.关于P-平坦模[J].广西师范大学学报(自然科学版),2004,22(4):36-40. 被引量:14
  • 2余柏林,汪明义.Π-凝聚环的推广[J].四川师范大学学报(自然科学版),2005,28(3):278-281. 被引量:9
  • 3徐龙玉,汪明义.关于零化子凝聚环[J].四川师范大学学报(自然科学版),2006,29(2):161-165. 被引量:10
  • 4Wang M Y, Zhao G. On maximal injectivity[J]. Acta Mathematica Sinica (English Series), preprint.
  • 5Lam T Y. Lectures on modules and rings[M]. New York/Berlin/Herdelberg:Spinger-Verlag, 1998.
  • 6Lam T Y. A first course in noncommutative rings[M]. New York/Berlin/Herdelberg:Spinger-Verlag, 1991.
  • 7Anderson F W, Fuller K R. Rings and categories of module (2nd Edition)[M]. New York/Herdelberg/Berlin:SpingerVerlag, 1992.
  • 8Enben Matlis. Injective modules over noetherian rings[J]. Pacific J. Math. Soc, 1958, 8:511 - 528.
  • 9Rotman J J. An introduction to homologic algbra[M]. New York/San Franciscco/London:Acdemic Press, 1979.
  • 10Ramamurthi V S. On the injectivity and flatness of cyclic modules[J]. Proc. Amer. Math. Soc, 1975, 48:21-25.

共引文献17

同被引文献141

引证文献22

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部