期刊文献+

基于自回归移动平均过程的贝叶斯质量控制方法研究 被引量:4

Bayesian Quality Control for Autoregressive Moving-average Processes
下载PDF
导出
摘要 针对自回归移动平均过程中控制变量的观测值并不具有相互独立性,引入贝叶斯分析方法研究过程质量控制问题.通过模型结构的贝叶斯分析,利用残差序列建立了基于自回归移动平均过程的贝叶斯质量控制模型,解决了观察数据相关条件下的过程质量监控问题.仿真分析结果表明:贝叶斯ARMA质量控制方法能够有效地避免了在受控状态下使用常规控制图造成的漏发或虚发报警现象,解决了自回归移动平均过程情况下的质量控制问题. To explore the quality control under the condition that the sample data in the autoregressive moving-average processes are not independent,time series models were introduced to fit these data.The Bayesian ARMA control charts were constructed with independent residual series data,and used to monitor the quality in autocorrelative processes.The results from simulation show that Bayesian ARMA quality control charts can effectively carry out quality control autoregressive moving-average processes,and avoid alarming incorrectly when the processes are under statistical control and not alarming when processes are out of control.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期83-87,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(70771038) 教育部新世纪优秀人才支持计划项目(NCET050704) 教育部人文社会科学规划项目(06JA910001)
关键词 质量控制 时间序列分析 ARMA模型 贝叶斯方法 仿真 quality control time series analysis ARMA models Bayesian approach simulation
  • 相关文献

参考文献12

  • 1JIANG W,TSUI K L,WOODALL W H.A new SPC monitoring method:the ARMA chart[J].Technometrics,2000,42 (4):399-410.
  • 2LU C W,REYNOLD M R.Control charts for monitoring the mean and variance of autocorrelated processes[J].Journal of Quality Technology,1999,31(3):259-274.
  • 3REYNOLD M R,LU C W.Control charts for monitoring processes with autocorrelated data[J].Nonlinear Analysis,1997,30(7):4059-4067.
  • 4ZHANG N F.A statistical control chart for stationary process data[J].Technometrics,1998,40(1):24-38.
  • 5SCHIPPER S,SCHMID W.Control charts for GARCH processes[J].Nonlinear Analysis,2001,47(3):2049-2060.
  • 6SALAZAR D,MOEN D H.Bayesian inferences for several autoregressive processes[J].European Joural of Operational Research,1998,105(1):113-117.
  • 7NENES G,TAGARAS G.The economically designed two-sided Bayesian control chart[J].European Journal of Operational Research,2007,183(1):263-277.
  • 8BAYARRI M J,GARCIA D G.A bayesian sequential look at u control charts[J].Technometrics,2005,47(2):142-151.
  • 9VILLIAM M.Multivariate bayesian control chart[J].Operations Research,2008,56(2):487-496.
  • 10WU C W.Assessing process capability based on Bayesian approach with subsamples[J].European Journal of Operational Research,2008,184(1):207-228.

二级参考文献15

  • 1SHIAU J H, CHIANGH C T, HUNG H N. A bayesian procedure for process capability assessment[J]. Quality and Reliability Engineering International, 1999,15 (4): 369 - 378.
  • 2SCHNEIDER H, PRUETT J, LAGRANGE C. Use of process capability indices in the supplier certification process [J]. Quality Engineering, 1998,68 (2): 225 - 235.
  • 3RODRIGUEZ R N. Recent development in process capability analysis[J]. Journal of Quality Technology, 1992,24 (4): 176 -187.
  • 4TAAM W, SUBBAIAH P, LIDDY J W. A note on multivariate capability indices [J]. Journal of applied statistics, 1993,20 (3):339-351.
  • 5CHEN H A. Multivariate process capability index over a rectangular tolerance zone[J]. Statistica Sinica, 1994,4(5) :749 - 758.
  • 6SHAHRIARI H,HUBELE N F, LAWRENCE F P. A multivariate process capability vector[A]. Proceedings of the 4th industrial engineering research conference[C]. Atlanta: Institute of industrial engineers,2000: 304 - 309.
  • 7CHAN L K, CHENG S W, SPIRING F A. A multivariate measure of process capability[J]. Journal of Modeling and Simulation,1991,11 (1) :1-6.
  • 8CHAN L K, CHENG S W, SPIRING F A. A new measure of process capability[J]. Journal of Quality Technology, 1998,20 (3): 162 - 175.
  • 9SPIRING F A. A unifying approach to process capability indices[J]. Journal of Quality Technology, 1997,29 ( 1 ): 49 - 58.
  • 10BOYLES R A. Exploratory capability analysis[J ]. Journal of Quality Technology, 1996,28(1 ): 91 - 98.

共引文献2

同被引文献45

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部