期刊文献+

基于范例推理的钻具失效诊断与预测 被引量:1

DIAGNOSIS AND PREDICTION OF CASE-BASED REASONING FOR DRILLING TOOLS FAILURE
下载PDF
导出
摘要 针对钻具失效影响因素比较复杂,失效诊断与预测比较困难的特点,提出了一种全新的基于范例推理的钻具失效诊断与预测方法。通过研究,力争建立一种适用性强、诊断与预测结果可靠的钻具失效诊断与预测方法。首先根据现场实际钻井资料,利用影响钻具失效因素的数据建立范例库,通过数据挖掘的技术获取相似范例,实现通过范例推理的方法诊断和预测可能发生的钻具失效。结合实际工况,最终达到降低井下事故,提高钻速的目的。 In view of the complex influence factor of drilling tools failure and difficult diagnosis and prediction of failure,a diagnosis and prediction method of case-based reasoning for drilling tools failure were put forward.The goal of the research is to establish a diagnosis and prediction method of drilling tools failure which has great applicability and accuracy.Based on the field drilling data and parameters of drilling tools failure,a case base was built up.Through the research on the data-base,the contingent drilling tools failure could be diagnosed and predicted based on case reasoning.Combined with field situation,the application of diagnosis and prediction method of drilling tools failure,could decrease drilling accident and improve drilling speed.
作者 费洪明
出处 《钻采工艺》 CAS 北大核心 2010年第3期22-25,共4页 Drilling & Production Technology
关键词 钻井 钻具失效 范例推理 人工智能 drilling,drilling tools failure,case reasoning,artificial inTelligence
  • 相关文献

参考文献6

二级参考文献21

  • 1冯仲仁,陈向阳,鄢恒珍.基于范例推理的公路软基处理方案决策模型[J].岩土力学,2004,25(11):1779-1781. 被引量:18
  • 2Ralph Barletta,田伟涛.基于事例的推理导论[J].计算机科学,1993,20(1):10-14. 被引量:23
  • 3Mario Lenz. Case-based Reasoning: From Foundations to Applications [M]. Berlin: Springer, 1998
  • 4Jagielska I, Matthews C, Whitfort T. An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J]. Neurocomputing,1999, 24:37~54
  • 5David Leake. Learning to integrate multiple knowledge sources for case-based reasoning [J]. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan, Morgan Kaufmann san Fransisco,1997, 246~251
  • 6Hiroshi Tsukimoto. Extracting rules from neural networks [J]. IEEE Transactions on Neural Networks, 2000,11(2) :377~389
  • 7Mejia-Lavalle M, Rodriguez-Ortiz G. Obtaining expert system rules using data mining tools from a power generation database[J]. Expert systems with applications, 1998, 14:37~42
  • 8Kraslawski A, Pedrycz W, L Nystrom. Fuzzy neural network as instance generator for case-based reasoning system[J]. Neural Computing & Applications, 1999, 8:106~113
  • 9Hanney K, Keane M. Learning adaptation rules from a case base [J]. Ian smith, Boi Faltings eds Proceedings of the Third European Workshop on Case-based Reasoning, Lausanne, New York :Springer, 1996, 178~ 192
  • 10Rudolph Stephan. Knowledge discovery in scientific data [J]. Proceedings of the International Society for Optical Engineering, 2000,250~258

共引文献25

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部