期刊文献+

非均匀Chemostat竞争模型的周期解 被引量:1

Periodic Solution for the Competition Model in the Unstirred Chemostat
下载PDF
导出
摘要 讨论非均匀Chemostat竞争模型半平凡周期解的存在性、稳定性及其正周期解的存在性。通过运用抛物型方程比较原理、稳定性理论、极值原理以及Leray-Schauder度理论,证明了该系统半平凡周期解的存在性和稳定性,得到了该系统正周期解存在的充分条件。 The existence and stability of semi-trivial periodic solutions and the existence of positive periodic solutions for the competition model in an unstirred chemostat are discussed.By using comparison theorems for parabolic equation,stability theory,the maximum principle and the theory of Leray-Schauder degree,the existence and stability of semi-trivial periodic solutions to the system are proved.The sufficient conditions of existence of positive periodic solutions to the system are obtained.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期12-17,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10571115) 教育部高等学校博士点基金资助项目(200807180004) 宝鸡文理学院重点资助项目(ZK0691 ZK0688)
关键词 CHEMOSTAT 稳定性 度理论 周期解 Chemostat stability theory of degree periodic solution
  • 相关文献

参考文献12

  • 1SO J W H,WALTMAN P.A nonlinear boundary value problem arising from competition in the chemostat[J].Appl Math Comput,1989,32:169-183.
  • 2HSU S B,WALTMAN P.On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[J].SIAM J Appl Math,1993,53:1026-1044.
  • 3WU J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39:817-835.
  • 4WU J H,NIE H,WOLKOWICZ G S K.The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat[J].SIAM J Math Anal,2007,38(6):1860-1885.
  • 5NIE H,WU J H.Asymptotic behavior of an unstirred chemostat model with internal inhibitor[J].J Math Anal and Appl,2007,334(2):889-908.
  • 6NIE H,ZHANG H W,WU J H.Characterization of positive solutions of the unstirred Chemostat with an inhibitor[J].Nonlinear Anal:Real World Appl,2008,9(3):1078-1089.
  • 7BELTRAMO A,HESS P.On the principal eigenvalue of a periodic-parabolic operator[J].Communs Partial Diff Eqns,1984,9:919-941.
  • 8WANG Y F,YIN J X.Predator-prey in an unstirred chemostat with periodical input and washout[J].Nonlinear Analysis:Real World Applications,2002,3:597-610.
  • 9PILYUGIN S S,WALTMAN P.Competition in the unstirred chemostat with periodic input and washout[J].SIAM J Appl Math,1999,59(4):1157-1177.
  • 10SMITH H L,ZHAO X Q.Dynamics of a periodically pulsed bio-reactor model[J].J Differential Equations,1999,155:368-404.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部