期刊文献+

动力系统精细算法的逼近机理与误差分析

The Approximate Mechanism and Error Analysis of Precise Computation for Dynamics System
下载PDF
导出
摘要 发现以下3者的协同作用是实现精细算法高精度、高效率的内在机制和根本原因:指数矩阵eHx的Maclaurin组数展开式绝对收敛;2)初始Maclaurin级数展开式中的有效展开项总数能够通过递推算法以指数方式扩展;3)新增有效展开项的系数能够通过递推算法以指数或拟指数方式逼近其真值。除此之外,还研究了初始Maclaurin级数展开式中的保留项数和选用的递推阶数等因素对精细算法逼近过程和逼近精度的影响,发现在多数情况下,适当增加保留项数比单纯增加递推阶数更有利于逼近精度的提高和逼近过程的加速实现。 The present paper discovers that the inherent mechanism and basic cause of realizing the high approximate precision and computational efficiency by the precision computation method for dynamics system lies in the cooperation of the following three factors: the expansion of exponential matrix eHx in Maclaurin series is absolutely convergent 2)the active expansion item of exponential matrix eHx in Maclaurin series increase exponentially as recurrent course. 3)the coefficients of newly adding active expansion items will approximate their actual values exponentially or quasi-exponentially as recurrent course. Besides, the effects for original reserved item M or recursion order N are dis- cussed, and the following rule is discovered that the approximate error of the precision computation method decrease ex- ponentially as increasing of reserved item M or recursion order N.
作者 董聪 丁李粹
出处 《强度与环境》 1999年第1期9-15,共7页 Structure & Environment Engineering
基金 国家自然科学基金!59505011 59778039 航空基金!95B51062
关键词 动力系统 瞬态响应 逼近 误差分析 精细算法 Dynamical system, Transient response, Approximation (mathematics), Error analysis
  • 相关文献

参考文献4

二级参考文献23

共引文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部