摘要
词语的歧义问题给语言的自动理解造成了困难,词义消歧研究是解决该问题的方法。当前统计学习的方法在该问题的研究上得到了普遍的应用,然而限于训练语料的规模,统计词义消歧方法还不能获得十分满意的结果。如何在有限规模的训练语料的条件下,提高统计学习的效率,改善学习效果,是有监督词义消歧方法研究上的热点问题。在词语扩展思想的基础上,设计了一种以基于指示词扩展的词义消歧新方法,并通过实验证明该方法可以在不增大训练语料规模的前提下提高有监督词义消歧的精度。
The problem of ambiguous word sense poses lots of difficulties for language automatic understanding.And the research of word sense discrimination is applied to the resolution of this problem.Statistics are booming in researching this problem.While due to limitation of the scale of training corpus,the method of statistical word sense discrimination can not attain satisfying re-sults yet.Therefore,under condition that only limit scale corpus is available,how to improve the efficiency and effectiveness of sta-tistical learning method is a hotspot in supervised word sense recognition research.On the basis of the idea of words extending,a new word sense discrimination method using words extending is proposed.Experiment results show that the proposed method can effectively improve the accuracy of supervised word sense discrimination as the training corpus is not enlarged.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第15期10-12,共3页
Computer Engineering and Applications
基金
国家自然科学基金No.60603092
No.60975042~~
关键词
词义消歧
人工智能
自然语言理解
模式识别
word sense disambiguation
artificial intelligence
natural language understanding
pattern recognition