期刊文献+

面向QoS全局优化的大规模Web服务组合方法

QoS-oriented global optimization approach for mass Web services composition
下载PDF
导出
摘要 把多个简单Web服务组合成为更强大的组合Web服务是面向服务计算的目标之一。由于存在多个功能相同但服务质量属性不同的候选Web服务,因此需要针对服务质量要求进行服务组合。鉴于Web服务组合规模的不断增长和特定领域的时限要求,面向实时大规模Web服务组合问题的快速收敛算法尤为重要,然而目前相关工作还很少。论文提出一种新的Web服务组合算法GAELS(Genetic Algorithm Embedded Local Searching),运用高适应度初始种群和局部搜索的变异策略,加快收敛速度。通过实验评测表明与简单遗传算法相比,GAELS算法能更快得到近似最优解,且随着服务规模增长,拥有更好的适应性。 One of the aims of SOA is to compose atomic Web services into a powerful composite service.QoS based selection approaches are used to choose the best solution among candidate services with the same functionality.Due to the increasing scale of the candidate Web services and real-time demands of specific application domain,the rapid convergent algorithm for mass Web services composition is special important.However,rare work has been done to solve the problem.The paper proposes a new algorithm named GAELS(Genetic Algorithm Embedded Local Searching),which uses the strategies of high-fitness initial population and mutation with local searching to speed the convergence.The in-depth experimental results show that the proposed GAELS algorithm can get the approximately optimal solution more quickly and be more adaptive to the expanding of candidate services than simple genetic algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第15期72-76,共5页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)No.2007AA01Z187~~
关键词 WEB服务组合 QoS全局优化 遗传算法 局部搜索 Web services composition QoS global optimal genetic algorithm local searching
  • 相关文献

参考文献9

  • 1Bilgin A S,Singh M P.A DAML-based repository for QoS-aware semantic Web service selection[C]//Proceedings of the 2004 IEEE International Conference on Web Services(ICWS2004),Califomia 2004.USA:IEEE Computer Society,2004:368-375.
  • 2Zeng Liangzhao,Benatallah B,Ngu A H,et al.QoS-aware middleware for Web service composition[J].IEEE Trans on Software Eng, 2004,30(5 ) : 311-327.
  • 3Canfora G,Penta M D,Esposito R,et al.An approach for QoS-aware service composition based on genetic algorithms[C]//Proccedings of the 2005 Conference on Genetic and Evolutionary Computation. New York,USA:ACM,2005:1069-1075.
  • 4Zhang Liangjie,Li Bing,Chao Tian,et al.On demand Web servicesbased business process composition[C]//Proceeding of IEEE International Conference on System Manand Cybemetics(SMC'03).Washing DC, USA : IEEE Computer Society,2003,4:4057-4064.
  • 5YU Tao,ZHANG Yue,LIN K J.Efficient algorithms for Web services selection with end-to-end QoS constraints[J].ACM Trans Web, 2007,1(1).
  • 6Canforam M D P G,Esposito R,Villiani M L.A lightweight approach for QoS-aware service composition[C]//Proceeding of 2nd International Conference on Service Oriented Computing.New York,USA: ACM, 2004: 36-47.
  • 7Ma Yue,Zhang Chenwen.Qnick convergence of genetic algorithm for QoS-driven Web service selection[J].Computer Networks,2008,52 (5):1093-1104.
  • 8Reeves C R,Rowe J E.Genetic algorithms:Priciples and perspectives:A guide to GA theory[M].Netherlands:Kluwer Academic Publisher, 2002.
  • 9WU Minghui,JIN Canghong,YU Chunyan,et al.QoS and situation aware ontology framework for dynamic Web services composition[C]// Proceedings of the 2008 12th International Conference on Computer Supported Cooperative Work in Design(CSCWD'08),Xi'an, 2004.China:IEEE Computer Society,2008,1:459-464.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部