期刊文献+

Measurement of GaN/Ge(001) Heterojunction Valence Band Offset by X-Ray Photoelectron Spectroscopy

Measurement of GaN/Ge(001) Heterojunction Valence Band Offset by X-Ray Photoelectron Spectroscopy
下载PDF
导出
摘要 X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 ±0.19 eV, according to the relationship between the conduction band offset AEc and the valence band offset △Ev:△Ec =EgGaN -EgGe - △Ev, and taking the room-temperature band-gaps as 3.4 and 0.67eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6±0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices. X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 ±0.19 eV, according to the relationship between the conduction band offset AEc and the valence band offset △Ev:△Ec =EgGaN -EgGe - △Ev, and taking the room-temperature band-gaps as 3.4 and 0.67eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6±0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第6期183-186,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 60776015 and 60976008, the National Basic Research Program of China under Grant No 2006CB604907, and the High-Technology R&D Program of China (Nos 2007AA03Z402 and 2007AA03Z451).
  • 相关文献

参考文献21

  • 1Zhang Y, McAleese C, Xiu H, Humphreys C J, Lieten R R, Degroote B and Borghs B 2007 Appl. Phys. Lett. 91 092125.
  • 2Lieten R R, Degroote S, Leys M and Borghs G 2009 J. Cryst. Growth 311 1306 1310.
  • 3Lieten R R, Degroote S, Cheng K, Leys M, Kuijk M and Borghs G 2006 Appl. Phys. Lett. 89 252118 (2006).
  • 4Leong M, Doris B, Kedzierski J, Rim K and Yang M 2004 Science 306 2057-2060.
  • 5Brammertz G, Mols Y, Degroote S, Leys M, Steenbergen J V, Borghs G and Caymax M 2006 J. Cryst. Growth 297 204.
  • 6Maeda T, Yasuda T, Nishizawa M, Miyata N, Morita Y and Takagi S 2004 Appl. Phys. Lett. 85 3181.
  • 7Lieten R R, Degroote S, Kuijk M and Borghs G 2007 Appl. Phys. Lett. 91 222110.
  • 8Li Y, Lazzarini L, Giling L J and Salviati G 1994 J. Appl. Phys. 76 5748.
  • 9Scholz S, Bauer J, Leigiger G, Herrnberger H, Hirsch D and Gottschalch V 2006 Cryst. Res. Technol. 41 111.
  • 10Wang S J, Cai J W, Pan J S and Huan A C H 2006 Appl. Phys. Lett. 89 022105.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部