期刊文献+

Ar+与氟化的Si样品相互作用机制的研究:分子动力学模拟 被引量:4

Study of Ar Ion Etching Mechanisms of Fluorinated Si Surfaces:Molecular Dynamics Simulation
下载PDF
导出
摘要 采用分子动力学方法模拟了Ar+与表面含有C,F反应层的Si样品的相互作用过程,以了解Ar+与氟化的Si的作用机制。为了和相对应的实验结果做比较,选择了两种样品,表面富F样品和表面富C样品。模拟结果表明,对于表面富F样品,能清楚地看到Si的刻蚀且随着入射能量的增加Si的刻蚀增加。当入射Ar+数量到达一定程度后Si的刻蚀完全停止。对于富C样品,几乎没有发生Si的刻蚀,这是由于Si-C键对Si的刻蚀起阻碍作用。 The Ar+ ion bombardment of the fluorinated silicon surfaces was simulated with classical molecular dy- namics to understand the mechanisms of argon ion etching of the silicon surfaces. In the simulation, both F-rich and C-rich samples were considered. The impacts of the sputtering conditions, including the Ar+ ion incident energy, the microstruc- tures, and impurity contents of the reactive layers of Si, were experimentally studied and simulated. The results show that theetching rate depends on the surface contents. For F-rich sample, silicon etching rate increases with an increase of inci- dent energy of Ar + ion. After some argon ion exposure, the etching came to a stop. In contrast,almost no Si atoms etching was observed for the C-rich sample. We conclude that formation of silicon carbide may significantly resist the Si atoms etching.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2010年第3期229-235,共7页 Chinese Journal of Vacuum Science and Technology
关键词 分子动力学 作用机制 刻蚀 表面富F样品表 面富C样品 Molecular dynamics, Interaction mechanism, Etching, F-rich sample, C-rich sample
  • 相关文献

参考文献26

  • 1Lehmann H W.Microelectronic Engineering[J] ,1995,27(1-4):7.
  • 2Bondur J A.Journal of Vacuum Science and Technology[J] ,1976,13(6):1023.
  • 3Brussaard J P,Janssen T.Physical Review B[J] ,2001,63(21):4302.
  • 4Chuang T J,Winters H F,Coburn J W.Applications of Surface Science[J] ,1979,2(4):514.
  • 5Standaert M.Journal of Vacuum Science and Technology A[J] ,1998,16(9):239.
  • 6Oehrlein G S.Surface Science[J] ,1997,386(1-3):222.
  • 7Winters H F,Coburn J W.Surface Science Reports[J] ,1992,14(4-6):162.
  • 8Abrams C F,Graves D B.Journal of Vacuum Science and Technology A[J] ,2001,19(1):175.
  • 9Abrams C F,Graves D B.Journal of Applied Physics[J] ,1999,86(11):5983.
  • 10Graves D B,Helmer B A.Journal of Vacuum Science and Technology A[J] ,1997,15(4):2252.

同被引文献75

  • 1Fenici R P, Frias A J, Jones R H, et al. J Nucl Mater, 1998, 258-263(1): 215-225.
  • 2Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing. Beijing: Science Press, 2006. 585-597.
  • 3Khan F A, Adesida I. Appl Phys Lett, 1999, 75(15): 2268-2270.
  • 4Sugiura J, LU W J, Cadien K C, et al. J Vac Sci Technol B 1986, 4(1): 349-354.
  • 5Winters H F. J Vac Sci Technol B, 1983, 1(4): 927-931.
  • 6Palmour J W, Davis R F. J Vac Sci Technol A, 1986, 4(3): 590-593.
  • 7Gou F, Liang M C, Chen Z. Appl Surf Sci, 2007, 253(21): 8743-8748.
  • 8Brenner D W. Phys Rev B, 1990, 42(15): 9458-9471.
  • 9Tersoff J. Phys Rev B, 1988, 38(1-3): 9902-9905.
  • 10Abrams C F, Graves D B. J Vac Sci Technol A, 1998, 16(5): 3006-3019.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部