期刊文献+

应用神经网络法预测光伏系统发电功率 被引量:7

Application of Neural Network on Generating Power Forecasting for PV System
下载PDF
导出
摘要 日照的不稳定性导致光伏系统的输出受到影响,为了尽可能准确地预测光伏系统的功率输出,就需要一种估测日照量的方法。文章中提出了一种使用神经网络预测日照量的方法,并通过计算机仿真证实了这种方法的合理性。同时介绍了3种神经网络法:FFNN、RBFNN和RNN,最后还对这3种方法的仿真结果进行了适当的比较。 Output of photo-voltaic (PV) system is influenced by unconstant solar radiation. In order to forecast the power output of PV system as accurately as possible, a method of solar quantity estimation is required. Therefore, it is proposed a method of neural network to estimate solar quantity, and the rationality is confirmed by computer simulations. Then three kinds of neural networks: FFNN, RBFNN and RNN are introduced, and finally the simulation results are properly compared.
作者 刘敬 高志建
出处 《大功率变流技术》 2010年第3期28-32,共5页 HIGH POWER CONVERTER TECHNOLOGY
关键词 神经网络 光伏系统的功率输出 日照预测 neural network(NN) power output for PV system solar quantity estimation
  • 相关文献

参考文献7

二级参考文献17

  • 1孙克辉,谈国强,盛利元,张泰山.Lyapunov指数计算算法的设计与实现[J].计算机工程与应用,2004,40(35):12-14. 被引量:14
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3金先级.人工神经网络导论讲义[M].武汉:华中理工大学出版社,1996..
  • 4Pinson P, Kariniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment[J].Power Tech Conference Proceedings 2003 IEEE Bologna, 2003, 2:8.
  • 5Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J] IEEE Transaction on Energy Conversion, 2004, 19(2) 352-361.
  • 6Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]. Power Industry Computer Applications, 2001:63-69.
  • 7Wang P, Billinton R. Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply[J], IEE Proc. Generation, Trans- mission and Distribution, 2001, 148(4): 355-360.
  • 8Billinton R, Guang Bai. Adequacy evaluation of generation systems including wind energy[C]. IEEE Canadian Conference on Electrical and Computer Engineering, 2002,1: 24-29.
  • 9Bech J, Hansen A D, Janosi L, et al. Wind farm modelling for power quality[J].Industrial Electronics Society, 2001,3(29): 1959-1964.
  • 10Li Shuhui, Wunsch D C, O'Hair E A, et al. Using neural networks to estimate wind turbine power generation[J]. IEEE Transactions on Energy Conversion, 2001, 16(3): 276-282.

共引文献65

同被引文献66

  • 1李玻,魏勇.优化灰导数后的新GM(1,1)模型[J].系统工程理论与实践,2009,29(2):100-105. 被引量:83
  • 2曹双华,曹家枞.太阳逐时总辐射混沌优化神经网络预测模型研究[J].太阳能学报,2006,27(2):164-169. 被引量:38
  • 3刘宝锭,彭锦.不确定理论教程[M].北京:清华大学出版社,2005:74-126.
  • 4王长贵,王斯成.太阳能光伏发电应用技术[M].2版.北京:化学工业出版社,2009.
  • 5王长贵,王斯成.太阳能光伏发电应用技术(第二版)[M].北京:化学工业出版社,2009.
  • 6S I IZA ,O SAODAH ,S ZURAIDI,et al. Weather forecasting using photovnltaie system and neural network [C]. I,iverpool. Uniled Kingdom:Second International Conference on Computational Intelligence, 2010.
  • 7A YONA,T SENJYU,A Y SABER,et al. Application of Neural Network to 24-hour-Ahead Generating Power Forecasting for PV System [C]. Pittsburgh, PA Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21 st Century. 2008.
  • 8YING ZI LI ,JIN-CANG NIU, Forecast of power generation for grid-connected photovoltaic system Dased on markov chain [C]. Wuhan. China:Power and Energy Engineering Conference, APPEEC Asia-Pacific, 2009.
  • 9许洪华.中国光伏发电技术发展研究(英文)[J].电网技术,2007,31(20):77-81. 被引量:79
  • 10IZA S I, SAODAH O, ZURAIDI S, et al. Weather forecasting using photovoltaic system and neural network [C]//2010 Second International Conference on Computational Intelligence, Communication Systems and Networks. Liverpool : CICSyN, 2010 : 96-100.

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部