摘要
日照的不稳定性导致光伏系统的输出受到影响,为了尽可能准确地预测光伏系统的功率输出,就需要一种估测日照量的方法。文章中提出了一种使用神经网络预测日照量的方法,并通过计算机仿真证实了这种方法的合理性。同时介绍了3种神经网络法:FFNN、RBFNN和RNN,最后还对这3种方法的仿真结果进行了适当的比较。
Output of photo-voltaic (PV) system is influenced by unconstant solar radiation. In order to forecast the power output of PV system as accurately as possible, a method of solar quantity estimation is required. Therefore, it is proposed a method of neural network to estimate solar quantity, and the rationality is confirmed by computer simulations. Then three kinds of neural networks: FFNN, RBFNN and RNN are introduced, and finally the simulation results are properly compared.
出处
《大功率变流技术》
2010年第3期28-32,共5页
HIGH POWER CONVERTER TECHNOLOGY
关键词
神经网络
光伏系统的功率输出
日照预测
neural network(NN)
power output for PV system
solar quantity estimation