期刊文献+

一种基于多判据综合决策的语音信号频域盲解卷积排序算法 被引量:2

A Synthetical Algorithm Based on Multiple Criterions to Solve Permutation Ambiguity in Audio Signal Frequency-Domain Blind Deconvolution
下载PDF
导出
摘要 在基于子带ICA的语音信号频域盲解卷积问题中,通过短时傅立叶变换把信号从时域卷积混合转化为各频点的瞬时混合将导致分离结果出现次序和幅度上的不确定性.在传统排序方法的基础上提出一种改进的基于多判据综合决策的排序算法,同时通过实验探讨了窗函数长度和信号非平稳性之间的关系.仿真实验表明,多判据决策有效克服了各种传统单一方法的局限,使得排序精度和最终分离质量获得提高. In audio signal frequency-domain blind deconvolution based on subband ICA,the transformation of signals from convolutive mixture in time-domain to instantaneous mixtures in frequency-domain may cause indeterminacies in their scaling and permutation.Based on traditional permutation alignment algorithms,this paper proposes a synthetical permutation alignment algorithm based on multiple criterions.The relationship between the length of window function and the non-stationary characteristic of speech signal is explored by experiments as well.The simulation shows that the deficiency of traditional algorithms based on single criterion can be overcame by this approach and the quality of permutation accuracy and separation results is improved greatly.
作者 姚成 张超
出处 《合肥学院学报(自然科学版)》 2010年第2期22-27,共6页 Journal of Hefei University :Natural Sciences
关键词 盲解卷积 频域 多判据 综合 排序 blind deconvolution frequency-domain multiple criteritions synthetical permutation
  • 相关文献

参考文献12

  • 1Buchner H,Aichner R,Kellermann W.A Generalization of a Class of Blind Source Separation Algorithms for Convolutive Mixtures[M].Boston:Proc ICA,2003:945-950.
  • 2Parra L,Spence C.Convolutive Blind Source Separation of Nonstationary Sources[J].IEEE Trans Speech Audio Process,2000,8(3):320-327.
  • 3Comon P,Rota L.Blind Separation of Independent Sources from Convolutive Mixtures[J].IEICE Trans Fundam Elec Com Comput Sci,2003,E86-A(3):542-549.
  • 4Buchner H,Aichner R,Kellermann W.A Generalization of Blind Source Separation Algorithms for Convolutive Mixtures Based on Second-order Statistics[J].IEEE Trans Speech Audio Process,2005,13(1):120-134.
  • 5Smaragdis P.Efficient Blind Separation of Convolved Sound Mixture[C].IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics.New Paltz,1997.
  • 6Araki S,Mukai R,Makino S,et al.Fundamental Limitation of Frequency-domain Blind Source Separation for Convolutive Mixtures of Speech[J].IEEE Trans on Speech and Audio Processing,2003,11(2):109-116.
  • 7Smaragdis P.Blind Separation of Convolved Mixtures in the Frequency Domain[J].Neurocomput,1998,22:21-34,.
  • 8Ikeda S,Murata N.A Method of ICA in Time-frequency Domain[C]//Proc ICA99,1999:365-370.
  • 9Ikram M Z,Morgan D R.A Beamforming Approach to Permutation Alignment for Multichannel Frequency-domain Blind Speech Separation[C]//in Proc ICASSP,2002:881-884.
  • 10Li H,Adali T.Gradient and Fixed-point Complex ICA Algorithms Based on Kurtosis Maximization[C].Proc IEEE Workshop,2006:85-90.

同被引文献5

  • 1Ikeda S ,Murata N. A method of ICA in Time Frequency Domain ,International Conference on Independent [J]. Component Analysis and Signal Separation ,1999:365371.
  • 2Araki S,Mukai R, Makino S,et al. Fundamental limitation of frequency--domain blind source separation for convolutive mixtures of speech[J]. IEEE Trans. on Speech and Audio Processing,2003,11 (2) :109-116,.
  • 3Smaragdis P.,"Efficient Blind Separation of Convolved Sound Mixture",IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics.New Paltz NY;October 1997.
  • 4刘艳凤,杨昕宇,姜辉.熵变的计算[J].牡丹江师范学院学报(自然科学版),2010,36(2):31-32. 被引量:4
  • 5吴春雷,刘力.不可逆过程中熵变问题的讨论[J].牡丹江师范学院学报(自然科学版),2010,36(3):13-14. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部