期刊文献+

种植骨髓干细胞的多孔人工骨在猴脊柱后外侧融合术中的应用 被引量:5

β-tricalcium Phosphate Seeded with Bone Marrow Mesenchymal Stem Cells as Bone Graft Substitute for Posterolateral Spinal Fusion
下载PDF
导出
摘要 目的使用种植有骨髓间充质干细胞的多孔人工骨应用于动物的脊柱后外侧融合手术,评估组织工程骨能否替代自体骨的使用。方法 6只食蟹猴行双侧L4-5脊柱融合手术。分为3组,分别移植种植细胞的β-磷酸三钙(β-TCP)、自体骨和单纯β-TCP。手术后12周处死。采用手法触压检查、微CT和外周定量CT(pQCT)以及组织学方法进行评估。结果手触检查显示,4例中有3例移植组织工程骨和自体骨形成硬性融合,而移植单纯β-TCP组均无硬性融合形成。组织学分析显示,移植组织工程骨组存在大量骨形成。pQCT显示,组织工程骨新骨形成增加了骨密度。结论组织工程骨可以用于替代自体骨的使用。 Objective To evaluate whether β-tricalcium phosphate (β-TCP) combined with bone marrow mesenchymal stem cells (BMSCs) can be used for lumbar posterolateral spine fusion (PLF) instead of autogenous bone graft.Methods 6 crab-eating macaques underwent bilateral PLF at L4-5,and divided into 3 groups that implanted β-TCP/BMSCs composite,autogenous bone,and β-TCP.Monkeys were sacrificed 12 weeks after implantation.Manual palpation,micro computed tomography,peripheral quantitative computed tomography (pQCT),and histology were used to assess bone formation.Results Manual palpation showed that 75% of β-TCP/BMSCs composite group and autogenous group achieved solid spine fusion,whereas none of β-TCP group fused.Histological analysis showed that all of the β-TCP/BMSCs group achieved massive bone formation.Bone mineral density (BMD) evaluated with pQCT in the β-TCP/BMSCs group increased by additional new bone.Conclusion β-TCP/BMSCs composite can be used for PLF instead of autogenous bone graft.
出处 《中国康复理论与实践》 CSCD 2010年第5期432-435,F0003,共5页 Chinese Journal of Rehabilitation Theory and Practice
关键词 脊柱后外侧融合术 Β-磷酸三钙 骨髓间充质干细胞 组织工程骨 posterolateral spine fusion β-tricalcium phosphate bone marrow mesenchymal stem cells tissue engineering bone monkey
  • 相关文献

参考文献28

  • 1Fernyhough J,Schimandle J,Weigel M,et al.Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion[J].Spine,1992,17(12):1474-1480.
  • 2Singh J,Nwosu U,Egol K.Long-term functional outcome and donor-site morbidity associated with autogenous iliac crest bone grafts utilizing a modified anterior approach[J].Bull NYU Hosp Jt Dis,2009,67(4):347-351.
  • 3DePalma A,Rothman R.The nature of pseudarthrosis[J].Clin Orthop Relat Res,1968,59:113-118.
  • 4Steinmann J,Herkowitz H.Pseudarthrosis of the spine[J].Clin Orthop Relat Res,1992,284:80-90.
  • 5Boden S,Kang J,Sandhu H,et al.Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans:a prospective,randomized clinical pilot trial:2002 Volvo Award in clinical studies[J].Spine,2002,27(23):2662-2673.
  • 6Schimandle J,Boden S,Hutton W.Experimental spinal fusion with recombinant human bone morphogenetic protein-2[J].Spine,1995,20(12):1326-1337.
  • 7Jiang X,Sun X,Lai H,et al.Maxillary sinus floor elevation using a tissue-engineered bone complex with beta-TCP and BMP-2 gene-modified bMSCs in rabbits[J].Clin Oral Implants Res,2009,20(12):1333-1340.
  • 8Kanatani M,Sugimoto T,Kaji H,et al.Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity[J].J Bone Miner Res,1995,10(11):1681-1690.
  • 9Boden S,Martin G,Morone M,et al.Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein-2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate[J].Spine,1999,24(12):1179-1185.
  • 10Dong J,Uemura T,Shirasaki Y,et al.Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells[J].Biomaterials,2002,23(23):4493-4502.

二级参考文献56

  • 1Dong J, Uemura T, Shirasaki Y, et al. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 2002;23(23):4493-4502
  • 2Jones JR, Tsigkou O, Coates EE,et al. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 2007 ;28(9): 1653-1663
  • 3Shimizu K, Ito A, Honda H. Mag-seeding of rat bone marrow stromal ceils into porous hydroxyapatite scaffolds for bone tissue engineering. J Biosci Bioeng 2007; 104(3): 171-177
  • 4Kruyt MC, Dhert WJ, Oner FC,et al. Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Biomaterials 2007;28(10): 1798-1805
  • 5Morgan SM, Tilley S, Perera S,et al. Expansion of human bone marrow stromal cells on poly-(DL-lactide-co-glycolide) (PDL LGA) hollow fibres designed for use in skeletal tissue engineering. Biomaterials 2007;28(35):5332-5343
  • 6Mastrogiacomo M, Papadimitropoulos A, Cedola A, et al. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials 2007;28(7): 1376-1384
  • 7Muschler GE Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004;86-A(7):1541-1558
  • 8Ono M, Kubota S, Fujisawa T, et al. Promotion of hydroxyapatite-associated, stem cell-based bone regeneration by CCN2. Cell Transplant 2008; 17( 1-2):231-240
  • 9Trojani C,Weiss P, Michiels JE,et al. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 2005;26(27):5509-5517
  • 10Yu H, Vandevord PJ, Gong W, et al. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J Orthop Res 2008;26(8):1147-1152

同被引文献105

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部