期刊文献+

基于Thiele连分式重建Newton迭代公式

Reconstructed Newton's Iterative Formula Based on Thiele's Continued Fraction
下载PDF
导出
摘要 文章基于Thiele连分式逼近,重新建立了求解非线性方程的经典的Newton迭代公式。采用差商可以近似代替导数的办法,将Newton迭代公式化为割线法迭代公式,从而避免了求导数运算。 Based on Thiele's continued fraction, the Newton's iterative formula is deduced again in the paper. Considering that derivatives can be approximated by divided differences, the Newton's method can be rewritten by the secant method that avoids computing derivatives.
出处 《安徽科技学院学报》 2010年第2期28-30,共3页 Journal of Anhui Science and Technology University
基金 安徽省高等学校优秀青年人才基金项目(2008jq1158 2010SQRL118) 蚌埠学院优秀人才计划(第三批) 蚌埠学院教育教学研究项目(YJJY0822) 安徽省教育厅自然科学研究重点项目(KJ2010A237)
关键词 Thiele连分式 Newton迭代方法 割线法 差商 Thiele's continued fraction The Newton's iterative method Secant method Divided difference
  • 相关文献

参考文献6

  • 1Burden RL,Faires JD.Numerical Analysis (Sixth Edition)[M].Pacific Grove,Calif.:Brooks/Cole Publishing Company,1997:50-70.
  • 2施妙根.科学与工程计算基础[M].北京:清华大学出版社,1999,8:140-142.
  • 3林成森.数值计算方法[M].北京:科学出版社,2001.173-181.
  • 4Jie-qing Tan (Institute of Applied Mathematics, College of Science and CAD/CG Division College of Computer & Information Hefei, University of Technology, Hefei 230009, China).THE LIMITING CASE OF THIELE'S INTERPOLATING CONTINUED FRACTION EXPANSION[J].Journal of Computational Mathematics,2001,19(4):433-444. 被引量:12
  • 5Kuchminskaya K.On approximation of functions by continued and branched continued fractions[J].Mat Met Fiz Meh Polya,1980,12:3-10.
  • 6Siemaszko W.Thiele-type branched continued fractions for two variable functions[J].Journal of Computational and Applied Mathematics,1983,9:137-153.

二级参考文献9

  • 1G. Baker,P. Graves-Morris.Pade Approximations[]..1981
  • 2Cuyt A,Wuytack L.Nonlinear methods in numerical Analysis[]..1987
  • 3A. Cuyt,B. Verdonk.Different techniques for the construction of multivariate rational interpolants[].Nonlinear Numerical Methods and Ratiional Approximation.1987
  • 4Stoer,J.,Bulirsch,R. Introduction to Numerical Analysis . 1992
  • 5Wang,R. H.Numerical Rational Apprdriation[]..1980
  • 6Siemaszko,W.Thiele-type branched continued fractions for two-variable functions[].Journal of Computational and Applied Mathematics.1983
  • 7Xu X.Y,Li J.K,Xu G.L.An Introduction to Pade Approximants[]..1990
  • 8Cuyt A,Verdonk B.Multivariate reciprocal differences for branched Thiele continued fractionexpansions[].Journal of Computational and Applied Mathematics.1988
  • 9Brezinski C.Acceleration de la Convergence en Analyse Numerique[].Lecture Notes in Mathematics.1977

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部