期刊文献+

二维会聚波在气体内传播不稳定性的数值模拟 被引量:1

Numerical simulation of instability of two-dimensional convergent shock wave propagating in gas
下载PDF
导出
摘要 利用CE/SE(conservation element and solution element)格式研究了柱面会聚波在气体中传播时间断面的不稳定问题和波阵面的演变问题,并利用level set函数追踪了驱动气体与低压气体间断面的发展过程。得到了间断面的Rayleigh-Taylor(R-T)和Richt myer-Meshkov(R-M)不稳定性发展成典型的"尖钉"和"气泡"结构的图像,初始正弦扰动下的会聚波产生"尖角"和"尖瓣"结构。结果表明,CE/SE格式在涉及会聚波的数值计算中是可行的。 The discontinuity instability and wave front evolution of a cylindrical convergent shock wave propagating in gas were simulated by the CE/SE scheme. The evolution of the interface between the high-pressure driving gas and the low-pressure driven gas was revealed by the level set method. Both the typical "spire" and "bubble" discontinuity patterns due to Rayleigh-Taylor (RT) and Richtmyer- Meshkov (RM) instability, and the "polygon" and "petal" patterns developed from the initial sine convergent shock wave were obtained. Results demonstrate that the CE/SE scheme is feasible in numerical simulation involving convergent shock wave propagation.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2009年第6期601-606,共6页 Explosion and Shock Waves
基金 国家自然科学基金项目(10772166) 国防科技工业技术基础质量与可靠性科研项目(Z112009B004) 中国工程物理研究院科学技术发展基金项目(2008B0202011)
关键词 流体力学 RAYLEIGH-TAYLOR不稳定性 CE/SE方法 会聚波 LEVEL set方程 fluid meehanics Rayleigh-Taylor instability CE/SE scheme convergent shock wave level set equation
  • 相关文献

参考文献10

  • 1孙承纬,卫玉章,周之奎.理论爆轰物理[M].北京:国防工业出版社,2000:130-138.
  • 2Chang S C.The method of space-time conservation element and solution element-A new approach for solving the Navier-Stokes equations[J].Journal of Computational Physics,1995,191:295-324.
  • 3Wang X Y,Chow C Y,Chang S C.Application of the space-time conservation element and solution element method to shock-tube problem[R].NASA TM-1068086,1994:1-35.
  • 4翁春生,Tay P Gore.CE/SE方法在非定常爆轰计算中的应用[J].空气动力学学报,2003,21(3):301-310. 被引量:16
  • 5张德良,谢巍,郭长铭,胡湘渝.气相爆轰胞格结构和马赫反射数值模拟[J].爆炸与冲击,2001,21(3):161-167. 被引量:21
  • 6ZHANG Zeng-chan,HE Hao,Chang S C,et al.Direct calculations of two-and three-dimensional detonations by an extended CE/SE method[R].AIAA 2001-0476,2001:1-5.
  • 7SENG T I,YANG R J.Simulation of the Mach reflection in supersonic flows by the CE/SE method[J].Shock Waves,2005,14(4):307-311.
  • 8张增产,沈孟育.用时空守恒方法求带源项及刚性源项的守恒律方程[J].清华大学学报(自然科学版),1998,38(11):87-90. 被引量:28
  • 9CHING Y L,ZAMAN K B M Q.Numerical investigation of 'transonic resonance' with a convergent-divergent nozzle[R].AIAA 2002-0077,2002:1-13.
  • 10CHANG S C,YU S T.Robust and simple non-reflecting boundary conditions for the Euler equationsA new approach based on the Space-Time CE/SE Method[J].NASA/TM-2003-212495,2003:1-40.

二级参考文献19

  • 1CHANGE S C. The method of space-time conservation dement and solution element - a new approach for solving the Navier-Stokes and Euler equations [ J]. Journal Computational Physics, 1995,119 : 295-324.
  • 2PARK S J,YU S T and LAI M C. Direct calculations of stable and unstable ZND detonations by the space-time conservation element and solution element method[R]. AIAA 98-3212.
  • 3CHANG S C, WANG X Y and CHOW C Y. New developments in the method of space-time conservation element and solution element-applications to two-dimensional time-marching problems[R]. NASA TM 106758,1994.
  • 4JAMES R .SCOTT and CHANG SIN-CHANG. The space-time solution element method-a new numerical approach for the Naver-Stokes equations[R]. AIAA-1995-0763.
  • 5ZHANGE Z C, JOHN S T,YU. etc. The CE/SE method for Naver-Stokes equations using unstructured meshes for flows at all speeds[R]. AIAA-2000-0393.
  • 6ZHANG ZENG-CHAN, JOHN S T. A modified space-time conservation element and solution element for Eider and Naver-Stokes equations[R]. AIAA 99-3277.
  • 7YU SHENC,--TAO, CHANG SIN-CHUNG. Treatments of stiff source terms in conservation laws by the method of space-time conservation element & solution element[R]. AIAA 97-0435.
  • 8ZHANG Z C,JOHN S T YU. A generalized space-time CE/SE method for the ELder equations on quadrilateral and hexagonal meshes[R]. AIAA-2001-2592.
  • 9COOPE M, JACKSON S, AUSTIN J E. Wintenberger and J. E. Shepherd. Direct experimental impulse measureamnts for detonations and deflagrations[R]. AIAA 2001-3812.
  • 10CHANG S C,WANG X Y and TO W hi. Application of the space-time conversation element and solution element method to one-dimensional convection-diffusion problem [J]. J. Comput. Phy. ,2000, 165 : 189-195.

共引文献60

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部