期刊文献+

单晶锗薄膜热导率的分子动力学模拟 被引量:5

Molecular Dynamics Simulation of Thermal Conductivity of Monocrystal Germanium Thin Films
下载PDF
导出
摘要 采用非平衡分子动力学(NEMD)方法研究平均温度为400K,厚度d=2.8288~11.315nm的单晶锗薄膜法向的热导率。模拟结果表明,单晶锗薄膜热导率随薄膜厚度的增加以接近线性的规律增加,其数值明显低于同等温度下体态锗的试验值。当薄膜厚度一定时,单晶锗薄膜的热导率随温度增加变化幅度很小,与同体态锗热导率随温度的变化规律相比表现出明显的尺寸效应。 Non-equilibrium molecular dynamics(NEMD) method was used to simulate the thermal conductivity of monocrystal germanium thin films on the out-of plane.In the simulation,the thickness of the films ranged from 2.8288 to 11.315 nm and the average temperature was 400 K.The results of calculations demonstrate that the thermal conductivity of the monocrystal germanium thin film increases nearly linearly with increasing of the film thickness,which is remarkably lower than the corresponding experimental data of bulk germanium.For a given film thickness,the thermal conductivity of the nanometer thin film varies slightly with increasing of the temperature,and its size effect is significant comparing with the thermal conductivity of bulks.
机构地区 哈尔滨工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第5期853-856,共4页 Rare Metal Materials and Engineering
关键词 热导率 分子动力学 单晶锗薄膜 尺寸效应 thermal conductivity molecular dynamics monocrystal germanium thin films size effect
  • 相关文献

参考文献9

  • 1Thean A V Y. VLSI Tech[J], 2005, 6:134.
  • 2Volz S, Chen G. Applied Physics Letters[J], 1999, 75(14): 2056.
  • 3XiaoPeng(肖鹏) FengXiaoli(冯晓利) LiZhixin(李志信).工程热物理学报,2002,23:6-6.
  • 4Feng X L, L I Z X, Guo Z Y. Chinese Physics Letters[J], 2001, 18(3): 416.
  • 5Tersoff J. Phy Rev B[J], 1988, 38:9902.
  • 6Maruyama S. Advances in Numerical Heat Transfer[J], 2000, 2(6): 189.
  • 7Singh B K, Roy M K, Menon V J et al. Journal of Physics and Chemistry of Solids[J], 2003, 64:2369.
  • 8宋海洋,查新未.碳纳米管/金复合材料拉伸力学性能的分子动力学模拟[J].稀有金属材料与工程,2008,37(7):1217-1220. 被引量:11
  • 9WangZenghu(王增辉) LiZhixin(李志信).工程热物理学报,2005,6(1):20-20.

二级参考文献20

  • 1张田忠,郭兴明.径向压缩单壁碳纳米管的力学行为[J].力学学报,2005,37(4):408-412. 被引量:3
  • 2Liew K M, Wong C Y, Tan M J. Acta Mater[J], 2006, 54:225
  • 3Zhang C L, Shen H S. Carbon[J], 2006, 44:2608
  • 4Gao G X, Chen X. Phys Rev B[J], 2006, 73:155 435
  • 5Bao WX, Zhu C C, Cui WZ. PhysicaB[J], 2004, 352:156
  • 6Liew K M, He X Q, Wong C H. Acta Mater[J], 2004, 52: 2521
  • 7Qian D, Dickey E C, Andrews R et al. Appl Phys Lett[J], 2000, 76:2868
  • 8Zhu R, Pan E, Roy A K. Mater Sci Eng A[J], 2007, 447:51
  • 9Xiao S P, Hou WY. Phys Rev B[J], 2006, 73:115 406
  • 10Kuzumaki T, Miyazawa K, Ichinose H. J Mater Res[J], 1998, 13:2445

共引文献10

同被引文献24

  • 1吴国强,孔宪仁,孙兆伟,赵丹,张伟清.单晶硅薄膜法向热导率的分子动力学模拟[J].哈尔滨工业大学学报,2007,39(9):1366-1369. 被引量:5
  • 2Zhan Bin(詹斌),Lan Jinle(兰金叻),Lin Yuanhua(林元华).稀有金属材料与工程[J],2013,42(6):54.
  • 3Yang Jie(杨杰),Wang Wan(王莞),Ou Yangkun(欧阳馄)et al.功能材料[J],2009,1(40):135.
  • 4Feng Bo, Li Zhixin, Zhang Xing. Thin Solid Films[J], 2009, 517:2803.
  • 5Damian Terris, Karl Joulaina, Denis Lemonnier et al. International Journal of Thermal Sciences[J], 2009, 48:1467.
  • 6Kuang C Lin, Angela Violi. International Journal of Heat and Fluid Flow[J], 2010, 31: 236.
  • 7Ng T Y, Yeo J J, Liu Z S. Journal of Non-Crystalline Solids[J], 2012, 358:1350.
  • 8Wu Guoqiang(吴国强),Kong Xiangren(孔宪仁),Sun Zhaowei(孙兆伟).物理学报[J],2006,55(1):1205.
  • 9Feng Bo, Li Zhixin, Zhang Xing. Thin Solid Films[J],2009, 517:2803.
  • 10Tang Qiheng. Molecular Physics[J], 2004, 102(18): 1959.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部