期刊文献+

退火升温速率对VO_2薄膜相变性能的影响 被引量:5

Effect of Anneal Heating Rate on Phase Transition Characteristics of VO_2 Thin Film
下载PDF
导出
摘要 采用溶胶-凝胶法在云母(001)衬底表面制备氧化钒薄膜,然后通过高温退火获得VO2多晶膜。利用SEM、FTIR等手段,分析不同退火升温速率条件下所制备薄膜的微观形貌、光学性能和热致相变特性。结果表明:在退火升温速率为8℃/min时,所制备的VO2薄膜具有最优异的热致相变特性,相变温度为65℃,滞后温宽为10℃。 Vanadium oxide thin films were fabricated on muscovite(001) substrates by sol-gel method,and the polycrystalline VO2 films were obtained by subsequent high temperature annealing.The morphology,optic properties and thermochromic phase transition characteristics of vanadium dioxide thin films annealed at different heating rate were investigated by SEM and FTIR.Results show that after annealed at the heating rate of 8℃/min,the VO2 films exhibit excellent thermochromic phase transition characteristics with phase transition temperature of 65℃ and hysteresis width of 10℃.
机构地区 四川大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第5期867-870,共4页 Rare Metal Materials and Engineering
关键词 升温速率 VO2薄膜 热致相变 光学性能 heating rate VO2 thin films thermochromic phase transition optic properties
  • 相关文献

参考文献14

  • 1Okazaki K, Wasati H, Fujimori M et al. Phys Rev B[J], 2004, 69(16): 165 104.
  • 2Nagashima K, Yanagida T, Tanaka H et al. J Appl Phys[J], 2006, 100(6): 063 714.
  • 3颜家振,黄婉霞,张月,刘小杰,涂铭旌.不同衬底上VO_2薄膜的微观结构和光学性能研究[J].稀有金属材料与工程,2008,37(5):819-822. 被引量:5
  • 4马红萍,徐时清.V_2O_5熔化成膜法制备VO_2薄膜[J].稀有金属材料与工程,2004,33(3):317-320. 被引量:4
  • 5Greenberg C B. Thin Solid Films[J], 1994, 251(2): 81.
  • 6Dachuan Y, Niankin X, Jingyu Z et al. JPhys D: Appl Phys[J], 1996, 29(4): 1051.
  • 7Guinneton F, Sauques L, Valmalette J C et al. J Phys Chem Solids[J], 2002, 62(7): 1229.
  • 8Suh J Y, Lopez R, Feldman L C et al. JAppl Phys[J], 2004, 96: 1209.
  • 9Maruyama T, Ikuta Y. J Mater Sci[J], 1993, 28(18): 5073.
  • 10Leone A, Trione M A et al. IEEE Transactions on Nuclear Science[J], 1990, 37(6): 1739.

二级参考文献18

  • 1黄维刚,林华,范樵乔,涂铭旌.掺Mo纳米VO_2粉体的相变特性研究[J].稀有金属材料与工程,2006,35(10):1554-1556. 被引量:14
  • 2Griffiths C H, Eastwood H K. J Appl Phys[J], 1974, 45:2201
  • 3Chain E E. J Vac Sci Technol A[J], 1986, 4: 432
  • 4Muraoka Y, Ueda Y, Hiroi Z. Journal of Physics and Chemistry of Solides[J], 2002, 63:965
  • 5Jin P, Yoshimura K, Tanemura S. J Vac Sci Technol A[J], 1997, 15(3):1113
  • 6Macchesney J, Potter J, Guggenheim H. J Electrochem Soc[J], 1968, 115: 32
  • 7Michel Schlegel L, Kathryn Nagy L, Paul Fenter et al. Geochimic et Cosmochimica Acta[J], 2006, 70: 3549
  • 8Dachuan Y, Niankan X, Jingyu Z et al. Mater Res Bull[J], 1996, 31:335
  • 9Borek M, Qian F, Nagabushnam Vet al. Appl Phys Lett[J], 1993, 63:3288
  • 10Richardson M A, Coath J A. Optics & Laser Technology[J], 1998, 30:137

共引文献7

同被引文献44

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部