期刊文献+

变尺度特征提取在数控机床状态识别中的应用 被引量:2

Application of the Character Extraction with Varying Scales on State Recognition of NC Machine Tool
下载PDF
导出
摘要 正确识别数控机床从正常到故障之间的演化过程,对掌握机床运行状态、保证加工精度具有重要意义。提出采用变尺度小波包特征提取方法以提高状态识别的准确性,并以数控车床主轴轴承磨损研究为例,将此方法与传统方法进行了对比分析。仿真和实验研究表明:变尺度小波包特征提取方法能有针对性地提取蕴含更多状态信息的振动信号特征用于状态识别,在192组测试样本中,变尺度特征提取方法的识别准确率达到98.44%,较传统方法有明显提高。 It is significant to recognize the evolvement from normal to fault for acquainting running-states and ensuring machining accuracy. The character extraction method with varying scales was proposed to improve the veracity of state recognition, and was com- pared with the traditional method with the example of headstock bearing's abrasion. The simulation and experimental results indicate that the signal characters with more state information can be obtained pertinently by using the character extraction method with varying scales. The veracity of recognition is 98. 44% in the 192 test samples, which is higher than that of the traditional method.
机构地区 九江学院
出处 《机床与液压》 北大核心 2010年第10期83-84,8,共3页 Machine Tool & Hydraulics
基金 江西省自然科学基金项目(2008GQC0002) 江西省教育厅科技资助项目(GJJ08448)
关键词 数控机床 状态识别 变尺度特征提取 NC machine tool State recognition Character extraction with varying scales
  • 相关文献

参考文献5

  • 1Bechhoefer E,Mayhew E.Mechanical Diagnostics SystemEngineering in IMD-HUMS[C]//IEEE Aerospace,Big Sky,2006.3.
  • 2黄强,焦立,李滟泽.柴油机故障诊断中振动信号测点位置的研究[J].华中科技大学学报(自然科学版),2007,35(5):99-101. 被引量:15
  • 3Dong M,He D.Hidden semi-Markov models for machinery health diagnosis and prognosis[J].Transactions of the North American Manufacturing Research Institution/SME,2004,32:199-206.
  • 4Dong M,He D.Hidden Semi-Markov Models for Machinery Health Diagnosis and Prognosis[J].Transactions of NAMRI/SME,2004,32:199-206.
  • 5Bechhoefer E,Bernhard A.Use of Non-Gaussian Distribution for Analysis of Shaft Components[C]//IEEE Aerospace,Big Sky,2006.3.

二级参考文献3

  • 1Nybery M,Stutte T.Model based diagnosis of the air path of an automotive diesel engine[J].Control Engineering Practice,2004,12(5):513-525.
  • 2Ehsan Mesbahji.An intelligent sensor validation and fault diagnostic technique for diesel engine[J].ASME Journal of Dynamic Systems,Measurement and Control,2001,123:141-144.
  • 3曹龙汉,曹长修.基于粗糙集理论的柴油机神经网络故障诊断研究[J].内燃机学报,2002,20(4):357-361. 被引量:15

共引文献14

同被引文献5

  • 1黄强,宋士华,丁志华,刘鑫.基于振动分析的柴油机故障程度的研究[J].华中科技大学学报(自然科学版),2007,35(6):105-107. 被引量:6
  • 2Bechhoefer,E.,Mayhew,E.,Mechanical Diagnostics System Engineering in IMD-HUMS, IEEE Aerospace[ J ].Big Sky, 2006.
  • 3Bechhoefer, E., Bernhard, A., Use of Non-Gaussian Distribution for Analysis of Shaft Components, IEEE Aerospace[J ].Big Sky, 2006.
  • 4Dong,M.,He,D.,Hidden Semi-Markov Models for Machinery Health Diagnosis and Prognosis Transactions of NAMRI/SME,2004(32).
  • 5CHEN Yong,WANG Guo-yin,JIN Fan,etal.A novel generalized congruence neural network s [C]//Proc of the 2nd International Symposium on Neural Networks.2005:455--460.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部