期刊文献+

时滞积分方程的高精度算法与外推加速收敛

High-Accuracy Algorithm and Extrapolation to Accelerate Convergence of Delay Integral Equation
下载PDF
导出
摘要 通过对非整数节点采用插值技巧,得到了一个使用梯形公式的时滞积分方程数值新算法.新算法是一个高精度算法,其收敛阶可达O(h2).为达到更高精度,文中还采用外推技术,使收敛阶提高到O(h3).最后的数值算例很好的验证了理论结果. In this paper, by using interpolation techniques for the non-integer node, we obtained a new numerical algorithm of delay integral equation by using trapezoid formula. The new algorithm is a high-accuracy algorithm, and its eon-vergencing order may be up to O(h^2). In order to achieve greater precision order, this paper also uses extrapolation techniques, making the convergence order up to O(h^3). The final numerical example verifies the theoretical results well.
出处 《西华师范大学学报(自然科学版)》 2010年第2期163-168,178,共7页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金资助项目(10671136)
关键词 时滞积分方程 渐进展开 外推 后验误差估计 delay integral equation asymptotic approximation extrapolation posteriori error estimate
  • 相关文献

参考文献10

  • 1BRUNNER H.Collocation Methods for Volterra Integral and Related Functional Diferential Equations[M].London:Cambridge University Press,2004.
  • 2ANDREOH G.Sulle Equazioni Integrali[J].Rend Cire Mat Palermo,1914,37(1):76-112.
  • 3CHAMBERS L G.Some Properties of the Functional Equation Φ(x)=f(x)+∫λxo g(x,y,Φ(y))dy[J].Internat J Math Math Sci.1990,14(1),27-44.
  • 4XU D Y,Integro-Differential Equations and Delay Integral Inequalities[J].Iohuku Math J,1992,44(3):365-378.
  • 5XUDY DENGJ YANGZC etal.ExponentialStabilityofCohen-GrossbergNeuralNetworkswithMultipleTime-VaryingDelays.四川大学学报:自然科学版,2004,41(1):29-32.
  • 6LIEM C B,LU T,SHIH T M.The Splitting Extrapolation Method[M].singapore:World Scientific Publishing,1995.
  • 7吕涛,石济民,林振宝.分裂外推与组合技巧[M].北京:科学出版社,19980.
  • 8LU T,HUANG Y.A Generalization of Discrete Gronwall Inequality and Its Application to Weakly Singular Voherra Integral Equation of the Second Kind[J].J Math Anal Appl,2003,282(1),56-62.
  • 9LU T,HUANG Y.Extrapolation Method for Solving Weakly Singular NonLinear Volterra Integral Equations of the Soeond Kind[J].J Math Anal Appl,2006,324(1)225-237.
  • 10KRESS R.Linear Integral Equations[M].NewYork/Berlin:Springer-Verlag Press,1989.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部