期刊文献+

修正Volterra级数的功放行为模型 被引量:3

Modified Volterra Series Modeling for RF Power Amplifiers Based on Feedback Structure
下载PDF
导出
摘要 从功率放大器的基本电路模型出发,建立了一种基于反馈结构的修正Volterra级数(MVS)的功率放大器的行为模型。在此基础上,依据功率放大器的非线性特性,对MVS模型进行了近似和简化,降低了模型的复杂度和参数提取时间。采用ADS仿真测量了一个10 W的WCDMA功率放大器的输入输出波形,用于模型提取和验证。计算结果表明,MVS模型能够很好地描述WCDMA功率放大器的非线性特性及记忆效应,与传统的记忆多项式模型(MP)相比较,MVS模型的NNSE低约3 dB,同时降低了模型的复杂度。 In this paper,a modified envelope-domain Volterra series model based on feedback structure is introduced.For the sake of reduction of model complexity and time cost during computation process,the MVS model is simplified by analyzing physical characteristics of power amplifiers and omitting those trivial components in the model.A 10 W WCDMA power amplifier is simulated in ADS for measuring input and output waveforms which are used in model extraction and verification for both MVS model and tradition MP model.Simulation results show that the MVS model can describe both dynamic nonlinearity and memory of power amplifier very well because its NMSE is 3 dB less than that of MP model,and at same time greatly decreases model complexity.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第3期368-371,共4页 Journal of University of Electronic Science and Technology of China
基金 国家863计划(2007AA018Z83)
关键词 行为模型 记忆效应 功率放大器 VOLTERRA级数 behavioral modeling memory effect power amplifiers volterra series
  • 相关文献

参考文献9

  • 1PEDRO J C,MASS S.A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches[J].IEEE Trans Microw Theory Tech,2005,53(3):1150-1163.
  • 2WOOD J,ROOT D E.Fundamentals of nonlinear behavioral modeling for RF and microwave design[M].Norwood,MA:Artech House,2005.
  • 3TSIMBINOS J,LEVER K V.Computational complexity of Volterra based nonlinear compensators[J].Electronic Letters,1996,32(9):852-854.
  • 4ISAKSSON M.A comparative analysis of behavioral models for RF power amplifiers[J].IEEE Trans Microw Theory Tech,2006,54(1):348-359.
  • 5SILVA C P,CLARK C J,MOULTHROP A A,et al.Optimal-filter approach for nonlinear power amplifier modeling and equalization[C] //Int Microwave Symp Dig.Boston,MA:IEEE,2000.
  • 6KU H,KENNY M.Quantifying memory effects in RF power amplifiers[J].IEEE Trans Microw Theory Tech,2002,50(12):2843-2849.
  • 7NELLES O.Nonlinear system identification[M].Berlin:Springer-Verlag,2001.
  • 8ZHU A,PEDRO J C,CUNHA T R.Pruning the volterra series for behavioral modeling of power amplifiers using physical knowledge[J].IEEE Trans Microw Theory Tech,2007,55(50):813-821.
  • 9DOOLEY J,O'BRIEN B,BRAZIL T J,et al.Behavioral modeling of RF power amplifiers using adaptive recursive polynomial functions[C] //Int Microw Symp Dig.San Francisco,CA:IEEE,2006.

同被引文献18

  • 1钱业青,姚天任.记忆非线性功率放大器的神经网络预失真[J].计算机工程与应用,2004,40(21):100-103. 被引量:15
  • 2钱业青.一种高效的用于RF功率放大器线性化的自适应预失真结构[J].通信学报,2006,27(5):35-40. 被引量:23
  • 3J. Kim, K. Konstantinou. Digital predistortion of wideband signals based on power amplifier model with memory[J].Electron.lett.,2001,37(11):1417-1418.
  • 4L. Ding, G. T. Zhou, D. R. Morgan, et al. A roboust digital basedband predistorter constraucted using memory polynomial[J].IEEE Trans.Commun.,2004, 52(1):159-165.
  • 5D. R. Morgan, Z.Ma.J.Kim,et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers[J].IEEE Transactions on Signal Processing,2006,54(10):3852-3860.
  • 6DING L,MA Z X,MORGAN D R.A least-squares/ newton method for digital predistortion of wideband signals[J].IEEE Trans Commun,2006,54(5): 833-840.
  • 7NASKAS N,PAPANANOS Y.Neural-network-based adaptive baseband predistortion method for RF power amplifier[J].IEEE Trans Circ & Syst Ⅱ:Express Briefs,2004,51(11):623-635.
  • 8TARINGOU F,HAMMI O,GHANNOUCHI F M.A dual branch Hammerstein-Wiener architecture for behavior modeling of wideband RF transmitters[C]//IEEE MTT-S Microwave Symp Dig.Anaheim,CA,USA.2010: 1692-1695.
  • 9SUNGHO C,EUI-RIM J,LEE Y H.Adaptive predistortion with direct learning based on piecewise linear approximation of amplifier nonlinearity[J].IEEE J Selected Topics Signal Process,2009,3 (3) :397-404.
  • 10ZHOU D,DE BRUNNER V.Novel adaptive nonlinear predistorters based on the direct learning algorithm[J].IEEE Trans Signal Process,2007,55(1):120-133.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部