期刊文献+

Petrology and Geochemistry of the Huangshan Granitic Intrusion in Anhui Province,Southeast China:Implications for Petrogenesis and Geodynamics 被引量:5

Petrology and Geochemistry of the Huangshan Granitic Intrusion in Anhui Province,Southeast China:Implications for Petrogenesis and Geodynamics
下载PDF
导出
摘要 The Huangshan granitic intrusion in Anhui province,SE China,is tectonically located at the southeastern boundary of the Yangtze Block.Based on the contact relation and the petrography,the Huangshan granitic intrusion can be divided into four stages,from early to late,medium-grained monzogranite,coarse-grained porphyric granite,fine-medium grained porphyric granite,and finecoarse grained granite.All rocks from the Huangshan granitic intrusion display similar petrological and geochemical characteristics,i.e.relatively high SiO_2(〉75%) and alkali(7.85%-8.59%),low CaO (〈1%),high Fe-number(FeO_T/(MgO+FeO_T) = 0.93-0.97) and A/CNK(atomic Al/(Ca+Na+K))=1.04- 1.19.They are also enriched in rare earth elements(REE,except for Eu,with a total REE contents ranging from 116 ppm to 421 ppm),high strength field elements such as Zr,Hf,Nb,but depleted in Ba,Sr and Ni.The 10 000×Ga/Al ratios are higher than 2.6,which are consistent with the A-type granitoids.Based on the classification diagrams proposed by Eby,the Huangshan granite can be classified into the A2 group,which is usually believed to be formed under an extensional tectonic setting.Their Nd isotopic compositions suggest that the primary magmas of the Huangshan granite are predominantly derived from the Proterozoic andesitic rocks in the region,and this conclusion is also supported by REE modeling.The systemic investigations on the geochemistry of the Huangshan granitic intrusion can provide significant implications for the understanding of the petrogenesis and the geodynamic regime of southeastern China during the Late-Mesozoic. The Huangshan granitic intrusion in Anhui province,SE China,is tectonically located at the southeastern boundary of the Yangtze Block.Based on the contact relation and the petrography,the Huangshan granitic intrusion can be divided into four stages,from early to late,medium-grained monzogranite,coarse-grained porphyric granite,fine-medium grained porphyric granite,and finecoarse grained granite.All rocks from the Huangshan granitic intrusion display similar petrological and geochemical characteristics,i.e.relatively high SiO_2(〉75%) and alkali(7.85%-8.59%),low CaO (〈1%),high Fe-number(FeO_T/(MgO+FeO_T) = 0.93-0.97) and A/CNK(atomic Al/(Ca+Na+K))=1.04- 1.19.They are also enriched in rare earth elements(REE,except for Eu,with a total REE contents ranging from 116 ppm to 421 ppm),high strength field elements such as Zr,Hf,Nb,but depleted in Ba,Sr and Ni.The 10 000×Ga/Al ratios are higher than 2.6,which are consistent with the A-type granitoids.Based on the classification diagrams proposed by Eby,the Huangshan granite can be classified into the A2 group,which is usually believed to be formed under an extensional tectonic setting.Their Nd isotopic compositions suggest that the primary magmas of the Huangshan granite are predominantly derived from the Proterozoic andesitic rocks in the region,and this conclusion is also supported by REE modeling.The systemic investigations on the geochemistry of the Huangshan granitic intrusion can provide significant implications for the understanding of the petrogenesis and the geodynamic regime of southeastern China during the Late-Mesozoic.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第3期581-596,共16页 地质学报(英文版)
基金 supported by the Application Programme for UNESCO Network of Geoparks supported by Huangshan Management Committee,111 Project(B07011)and PCSIRT.
关键词 Huangshan granitic intrusion A-type granitoids GEOCHEMISTRY Late-Mesozoic lithospheric extension Huangshan granitic intrusion, A-type granitoids, geochemistry, Late-Mesozoic,lithospheric extension
  • 相关文献

参考文献29

二级参考文献424

共引文献2903

同被引文献140

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部