期刊文献+

一株以喹啉为燃料的产电假单胞菌(Pseudomonas sp.)Q1的特性研究 被引量:9

Electricity generation and quinoline degradation by an electrochemically active bacterium,Pseudomonas citronellolis strain Q1
原文传递
导出
摘要 微生物燃料电池(Microbial fuel cell,MFC)阳极微生物的种类和作用机制对MFC的产电性能有着重要影响.从稳定运行了210d,以200mg·mL-1喹啉为燃料的MFC阳极室分离得到一株革兰氏阴性菌,命名为Q1,其16S rRNA基因序列与Pseudomonas citronellolisDSM50332T的同源性为96.9%,属于假单胞菌属(Pseudomonassp.).循环伏安法及构建纯菌MFC方法的测定结果均表明Q1具电化学活性.菌株Q1能利用单一喹啉或喹啉和葡萄糖混合燃料产电.在本试验所用浓度范围内,增加葡萄糖浓度,菌株Q1对应的最高输出电压增加,增加喹啉浓度菌株Q1的产电性能则降低,研究表明,菌株Q1库仑量和库仑效率达到最高时(分别为18.65C和36.56%),存在一个最佳喹啉与葡萄糖浓度比1∶3.在MFC中喹啉的降解效果优于普通厌氧培养,葡萄糖对菌株Q1降解喹啉有促进作用,以喹啉和葡萄糖为混合燃料24h对喹啉的去除率达99.53%,优于以单一喹啉为燃料的情况.循环伏安法和不同更换基质方式试验表明,附着在电极上的菌株Q1对产电起主要作用,Q1的溶解态代谢产物对产电过程起电子介体的作用. Microbial components of the microbial fuel cells(MFC),including the constituent species and metabolic mechanism of the anodic microorganisms,are critical to the optimization of electricity generation.An electrogenetic bacterial strain(designated as Q1)was isolated from an MFC,using 200 mg·L^-1 quinoline as the fuel and operating for 210 d.The isolate was identified as a strain of Pseudomonas citronellolis(with a similarity of 96.9%)based on its physiological,morphological characteristics,and 16S rRNA sequence analysis.The electrochemical activity of Q1 was tested with cyclic voltammetry(CV)and by operation of a new MFC inoculated with the strain.Power generation was obtained using the strain and quinoline and/or glucose as the fuel.Increasing the glucose concentration had a positive influence on the maximum voltage while high concentrations of quinoline decreased the voltage output.The optimal ratio of quinoline to glucose was 1∶3,which led to the highest coulomb charges of 18.65 C and columbic efficiency of 36.56%.The quinoline degradation rate with strain Q1 reached 99.53% by 24 h,which were higher than those under the conventional anaerobic conditions.The results showed that Q1 attached to the anode played a major role in power generation and soluble mediators produced by Q1 acted as the electron shuttles.
出处 《环境科学学报》 CAS CSCD 北大核心 2010年第6期1130-1137,共8页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.50608070 50779080) 环境模拟与污染控制国家重点联合实验室专项基金(No.08K02ESPCT) 广东省教育部产学研结合项目(No.2009B090300324)~~
关键词 微生物燃料电池 产电细菌 喹啉降解 共基质 产电性能 产电机理 microbial fuel cell Pseudomonas quinoline degradation co-substance electricity production mechanism of electron transfer
  • 相关文献

参考文献24

  • 1Alferov S V, Tomashevskaya L G, Ponamoreva O N, et al. 2006. Biofuel cell anode based on the luconobacter oxydans bacteria cells and 2, 6-dichlorophenolindophenol as an electron transport mediator [ J ]. Russian Journal of Electrochemistry, 42 (4) : 403-404.
  • 2柏耀辉,赵翠,肖亚娜,温东辉,唐孝炎.降解喹啉的假单胞菌BW003菌株的分离、鉴定和降解特性[J].环境科学,2008,29(12):3546-3553. 被引量:13
  • 3Biffinger J C, Byrd J N, Dudley B L, et al. 2008. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells [J]. Biosensors and Bioeleetronies, 23 (6) : 820-826.
  • 4Biffingera J C, Pietrona J, Bretschgerb O, et al. 2008. The influence of acidity on microbial fuel cells containing Shewanella oneidensis [ J]. Biosensors and Bioelectronics, 24 (4) : 900-905.
  • 5Chaudhuri S K, Lovely D R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [ J]. Nature Biotechnology, 21 (10) : 1229-1232.
  • 6Dumas C, Basseguy R, Bergel A. 2008. DSA to grow electrochemically active biofilms of Geobacter sulfurreducens [ J ]. Electrochimica Acta, 53 (7): 3200-3209.
  • 7Gorby Y A,Yanina S. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR- 1 and other microorganisms [J]. Proceedings of the National Academy of Sciences of the USA, 103 (30): 11358-11363.
  • 8Lee S A, Choi Y, Jung S, et al. 2002. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans [J]. Bioelectrochemistry, 57 (2): 173-178.
  • 9Li Z L, Yao L, Kong L C, et al. 2008. Electricity generation using a baffled microbial fuel cell convenient for stacking [J]. Biorcsource Technology, 99 (6) : 1650-1655.
  • 10Liu H, Logan B E. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [ J ]. Environmental Science and Technology, 38 (14): 4040-4046.

二级参考文献45

  • 1刘彬彬,张峰,冯晓西,刘勇弟,张晓君,赵立平.对降解喹啉的厌氧生物反应器中重要功能菌群的鉴定[J].生态学报,2006,26(5):1390-1395. 被引量:4
  • 2黄霞,范明志,梁鹏,曹效鑫.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13. 被引量:70
  • 3王嘉,周涛,任大军,陆晓华.喹啉的微波辅助光催化氧化降解研究[J].环境保护科学,2007,33(2):21-24. 被引量:7
  • 4Bond D R, Lovely D R. 2003. Electricity Production by Geobacter sulfurreducens Attached to Electrodes [ J~. Appl Environ Microb, 69(3) : 1548--1555.
  • 5Bond D R, Holmes D E, Tender L M, et al. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments [ J ]. Science, 295 ( 18 ) :483--485.
  • 6Catal T, Fan Y, Li K, et al. 2008. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells [J]. J Power Sources, 180:162--166.
  • 7Catal T, Li K, Bermekc H, et al. 2007. Electricity production from twelve monosaccharides microbial fuel cells[ J ]. J Power Sources, 175 : 196--200.
  • 8Chaudhuri S K, Lovley D R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [ J]. Nat Biotechnol, 21 (10) : 1229--1232.
  • 9Kim J R, .,lung S H, Regan J M, et al. 2007. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[ J]. Bioresource Technology,98:2568--2577.
  • 10Li Y M, Gu G W, Zhao J F, et al. 2001. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge [ J]. Process Biochemistry, 37 ( 1 ) : 81--86.

共引文献40

同被引文献183

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部