期刊文献+

基于动态贝叶斯网络的协同过滤推荐方法 被引量:1

下载PDF
导出
摘要 提出一种基于动态贝叶斯网络的协同过滤推荐方法。该方法实现了动态的推荐过程,使得推荐结果随用户喜好的改变而得到及时更新。并且使用DBN代替简单的相似模型来度量用户相似性,提高了最近邻推荐的准确性,解决了实时性推荐和数据空间的可扩展的问题。最后,给出基于DBN的协同过滤预测模型。通过对一个实例的研究验证了所提出的算法以及推荐模型的可行性。
出处 《黑龙江科技信息》 2010年第14期39-39,148,共2页 Heilongjiang Science and Technology Information
  • 相关文献

参考文献5

二级参考文献28

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2孙笑微,赵大宇,李晓毅,唐恒永.用于数据挖掘的TAN分类器的研究与应用[J].计算机技术与发展,2006,16(11):140-142. 被引量:5
  • 3Yoon Ho Cho,Jae Kyeong Kim,Soung Hie Kim. A personalized recommender system based on Web usage mining and decision tree induction. Expert Systems with Applications, 2002,23:29-- 342.
  • 4Gerard Rodiguca Mula,Hector Garcia Molina,Andreas Paepacke. Callaborative value filtering on the Web.Computer Network and ISDN Systems, 1998,30: 736 -- 738.
  • 5Dong seop Lee, Gye Young Kim, Hyung II Choi. A Web-based collaborative filtering system. Pattern Recognition, 2003,36 : 519-- 526.
  • 6John S Breese, David Heckerman,Carl Kadie. Empirial analysis of predictive algorithms for collaborative filtering. Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence, 1998.
  • 7Ben S J,Konstan J A,Riedl J.E-commerce Recommendation Applications[EB/OL].http://www.grouplens.org/papers/pdf/ECRA.pdf,2002-09-26.
  • 8Breese J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[A].In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence[C].Madison,Wisconsin:Morgan Kaufmann,1998.43-52.
  • 9Badrul S,Karypis G,Konstan J,et al.Item-based Collaborative Filtering Recommendation Algorithms[Z].WWW10,2001.
  • 10Badrul S,Karypis G,Konstan J,et al.Analysis of Recommendation Algorithms for E-commerce[M].New York,USA:ACM Press,2000.106-112.

共引文献74

同被引文献38

  • 1张光卫,康建初,李鹤松,刘常昱,李德毅.面向场景的协同过滤推荐算法[J].系统仿真学报,2006,18(z2):595-601. 被引量:27
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 4曾艳,麦永浩.基于用户评分的关联规则挖掘协同推荐[J].计算机工程,2005,31(15):87-89. 被引量:3
  • 5孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 6Yu C, Xu J R, Du X Y. Recommendation algorithm combining the user-based classified regression and the item-based filtering//Pro- ceedings of the 8th International Conference on Electronic Com- merce:The New E-commerce:Innovations for Conquering Current BmTiers, Obstacles and Limitations to Conducting Successful Busi- ness on the Internet. New York:ACM Press,2006:574 -578.
  • 7Kim B M, Li Q, Park C S, et al. A new approach for combining con- tent -based and collaborative filters. Journal of Intelligent Informa- tion System,2006,27( 1 ) :79 -91.
  • 8Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendation algorithms for e-commerce//Proceedings of the 2nd ACM Confer- ence on Electronic Commerce. New York:ACM Press,2000:158 - 167.
  • 9Sarwar B, Kaypis G, Konstan J, et al. Item-based collaborative filte- ring recommendation algorithms//Proceeding WWW ' 1 Proceed- ings of the 10th International Conference on World Wide Web. New York :ACM Press,2001:285 - 295.
  • 10O' Connor M, Herlocker J. Clustering items for collaborative tlte- ring. [ 2011 - 04 - 19 ]. http ://www. cs. umbc. edu/- ian/sigir99 - rec/papers/oco.

引证文献1

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部