摘要
提出一种基于动态贝叶斯网络的协同过滤推荐方法。该方法实现了动态的推荐过程,使得推荐结果随用户喜好的改变而得到及时更新。并且使用DBN代替简单的相似模型来度量用户相似性,提高了最近邻推荐的准确性,解决了实时性推荐和数据空间的可扩展的问题。最后,给出基于DBN的协同过滤预测模型。通过对一个实例的研究验证了所提出的算法以及推荐模型的可行性。
出处
《黑龙江科技信息》
2010年第14期39-39,148,共2页
Heilongjiang Science and Technology Information