期刊文献+

气泡/液滴Marangoni迁移数值模拟研究

NUMERICAL SIMULATION ON MARANGONI MIGRATION OF BUBBLE AND DROP
原文传递
导出
摘要 本文利用LevelSet方法,数值模拟了微重力情况下气泡/液滴的Marangoni迁移现象,分析了Marangoni数对迁移速度的影响。数值模拟结果表明,随着Marangoni数的增大,非线性热对流效应的影响会逐渐增大,导致沿相界面温度分布趋于均匀,从而降低迁移运动的驱动力,使气泡/液滴的迁移速度随Marangoni数的增加而逐渐减小。 Using the Level Set method, we simulate the Marangoni migration of bubble and drop in microgravity condition and we analyze the influence of Marangoni number on the migration velocity in this paper. The simulation results indicate that with the increase of Marangoni number, the effect of nonlinear heat convection will also increase gradually and this can make the temperature of the phase interface much more uniform and diminish the driving force of the migration, so the terminal migration velocity of bubble and drop will decrease monotonously with the increase of the Marangoni number.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第6期979-982,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目(No.10972225)
关键词 Marangoni迁移 气泡 液滴 LEVEL SET方法 Marangoni migration bubble drop Level Set method
  • 相关文献

参考文献11

  • 1Young N O, Goldstein J S, Block M J. The Motion of Bubbles in a Vertical Temperature Gradient [J]. J. Fluid Mech., 1959, 6:350-356.
  • 2NAahle R, Neuhaus D, Siekmann J, et al. Separation of Fluid Phases and Bubble Dynamics in a Temperature Gradient-a Spacelab D1 Experiment [R]. Zeitschrift Fuer Flugwissenschaften und Weltraumforschung, 1987, 11:211 213.
  • 3Ma X J, Balasubramaniam R, Subramanian R S. Numerical Simulation of Thermocapillary Drop Motion with Internal Circulation [J]. Num. Heat Transfer A, 1999, 35(3): 291-309.
  • 4Harlow F H, Welch J F. Numerical Study of Large- Amplitude Free-Surface Motions [J]. Phys. Fluids, 1966, 99(4): 842-851.
  • 5Juric D, Tryggvason G. Computations of Boiling Flows [J]. Int. J. Multiphase Flow, 1998, 24(3): 387-410.
  • 6Hirt C W, Nichols B D. Volume of Fluid Method for the Dynamics of Free Boundaries [J]. J. Comput. Phys., 1981, 39(2): 201-225.
  • 7Osher S, SetMan J A. Fronts Propagating with Curvature- Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations [J]. J. Comput. Phys., 1988, 79 (1): 12-49.
  • 8Son G, Dhir V K. Numerical Simulation of Film Boiling Near Critical Pressures with a Level Set Method [J]. J. Heat Transfer, 1998, 120:183 192.
  • 9Sussman M, Smereka P, Osher S. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow [J]. J. Comput. Phys., 1994, 114(1): 146-159.
  • 10Fediw R P, Aslam T, Merriman B, et al. A Nonoscillatory Eulerian Approach to Interface in Multimaterial Flows [J]. J. Comput. Phys., 1999, 152(2): 457-492.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部