期刊文献+

偏微分方程组的一种化简方法 被引量:3

Way of Simplifying Partial Differential Equation Systems
下载PDF
导出
摘要 以李群为工具,给出了一种化简两个自变量,两个未知函数的一阶偏微分方程组的方法.在一定的条件下,可将偏微分方程组化简为一个一阶偏微分方程.若能求出此一阶偏微分方程的解,则只需再解一个一阶常微分方程,即可得出原偏微分方程组的解.该方法可用于某些一阶偏微分方程组的求解.其中包括非定常完全气体一维均熵方程和波动方程. By using Lie group method, a way of simplifying some first order partial differential equation systems which have two independent variables and two unknow functions is presented. Under some conditions, the partial differential equation system can be simplified to a first order partial differential equation. If the partial differential equation can be solved, then the solution of the original partial differential equation system can be obtained by solving a first order ordinary differential equation. The presented way can be used to solve some first order partial differential equation systems, including the equation of one dimentional nonsteady isentropy completed gas and the wave equation.
作者 刘胜 管克英
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 1999年第1期100-103,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金
关键词 李群 偏微分方程组 可解性 化简法 Lie groups partial differential equations solvability
  • 相关文献

同被引文献20

  • 1姜礼尚 陈亚浙.数学物理方程讲义[M].北京:高等教育出版社,1988..
  • 2陈恕行.偏微分方程概论[M].北京:人民教育出版社,1982..
  • 3Bluman G W ,Kumei S. Symmetries and Differential Equations [M]. New York :Springer, 1989.
  • 4Olver P J. Applications of Lie Groups to Differential Equations [M]. New York :Springer, 1986.
  • 5R.Gerard,H.Tahara.Singular Nonlinear Partial Differential Equations[M].Wiesbaden,1996.
  • 6Ch.Briot,J.CI.Bouquet.Recherches sur les proprietes des fonctions definies par des equations differentielles[J].J.Ecole Polytech.21 (1856),133-197.
  • 7L.C.Evance.Partial Differential Equations[M].American Mathematical Society.1998.
  • 8K.Tenenblat,P.Wintemitz.On the symmetry groups of the intrinsic generalized wave and Sine-Gordon equations[J].J.Math.Phys.,1993,34 (8):3527-3542.
  • 9P.G.L.Leach,S.Bouquet,A.Dewisme.Symmetries of Hamiltonian one-dimensional systems.Int.J.Non-Linear Mechanics,1993,28(6):705-712.
  • 10A.H.Kara,F.M.Mahomed.A note on the solutions of the Emden-Fowler equation[J].Int.J.Non-Linear Mechanics,1993,28 (4):379-384.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部