期刊文献+

多尺度小波核支持向量回归及其对丙烯浓度的估计与应用

Support vector regression based on multi-scale wavelet kernel for propylene concentration estimation and application
下载PDF
导出
摘要 多尺度小波核支持向量回归方法具有较强的鲁棒性和较好的泛化能力,而模型选择是其获得良好泛化性能的关键,其中采用多尺度核方法参数选择的复杂度比单个核方法的参数选择大得多。这里提出了一种构造多尺度Morlet小波核的支持向量回归机的方法,它采用量子聚类方法划分样本类别以确定多尺度核的尺度个数,依赖支持向量数据描述方法对相应样本计算其核宽度,然后用文化算法优化剩下的少量模型参数。结果表明所得到的多尺度小波核模型的泛化能力明显优于单小波核或高斯核情形。分别用3个标准回归数据集Bostonhous-ing、Bodyfat和Santa作仿真,结果表明,相对于高斯核方法,多尺度小波核支持向量回归方法的测试集均方差分别减小了6.8%、62.0%和91.3%。同时,该方法对丙烯精馏塔的塔釜丙烯浓度预估表现出较好的泛化能力。它不仅使丙烯浓度训练集模型输出与实际输出基本吻合,而且使丙烯浓度测试集相对误差为0.211,与其他方法相比,其预测误差是最小的。 Support vector regression based on multi-scale wavelet kernel has strong robustness and good generalization ability,but it is critical for it to choose appropriate model parameters.Obviously,the multi-scale kernel method has more difficulty in model selection than the single kernel approach.This paper proposed an approach about how to develop support vector regression based on mutli-scale wavelet kernel.It applied quantum clustering to data partition in order to determine the scale parameter of the multi-scale kernel,resorted to the support vector data description algorithm to calculate the kernel width of the corresponding data points,and then used cultural algorithms to optimize the kernel width and the remaining parameters.The results showed that the multi-scale kernel method outperformed the single wavelet approach and the Gaussian method.The experiments about three regression data sets—Boston housing,Bodyfat and Santa demonstrated that in contrast with the Gaussian approach,the present multi-scale wavelet support vector regression made the mean squared error of test sets decrease by 6.8%,62.0% and 91.3%,respectively.Meanwhile,the proposed approach exhibited good generalization ability for propylene concentration estimation in the bottom byproduct of propylene fractionation tower.It not only enabled the model output of training set for propylene concentration to show little difference with the actual output,but also made the relative error of test set down to 0.211.Compared with other methods,it had the minimal prediction error.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第6期1486-1494,共9页 CIESC Journal
基金 国家杰出青年科学基金项目(60625302) 国家重点基础研究发展计划项目(2009CB320603) 国家自然科学基金项目(60804029) 长江学者和创新团队发展计划项目(IRT0721)~~
关键词 多尺度小波核 量子聚类 支持向量数据描述 文化算法 模型选择 multi-scale wavelet kernel quantum clustering support vector data description cultural algorithms model selection
  • 相关文献

参考文献3

二级参考文献33

  • 1崔玉平,郑胜,刘永才.基于向量机的红外小目标检测技术研究[J].红外与激光工程,2005,34(6):696-702. 被引量:9
  • 2[1]TARTAKOVSKY A,BLAZEK R.Effective adaptive spatial-temporal technique for clutter rejection in IRST[C]//.SPIE Proceedings Signal and Data Processing of Small Targets,Bellingham,2000,1-11.
  • 3[3]LEE C K,WONG S P.A mathematical morphological approach for segmenting heavily noise corrupted images[J].Pattern Recognition,1996,29(8):1347-1358.
  • 4[4]LOSTEIN S D,RICHARDSON H S.A sequential detection approach to target tracking[J].IEEE Transaction on Aerospace and Electronic Systems,1994,30(1):197-211.
  • 5[5]SHIRVAIKAR M V,TRIVEDI M M.A neural network fdter to detect small targets in high clutter backgrounds[J].IEEE Transactions on neural networks,1995,6(1):252-257.
  • 6[8]WANG Zhi-cheng,TIAN Jin-wen,LIU Jian,et al.Small infrared target fusion detection based on support vector machines in the wavelet domain[J].Optical Engineering,2006,45(7):76401.
  • 7[9]程辉.多尺度支持向量机在SAR导引头中的应用方法研究[D].武汉:华中科技大学,2006.
  • 8Sergios Theodoridis Konstantinos Koutroumbas.Pattern Recognition(Second Edition)[M].北京:机械工业出版社,2003.163-205.
  • 9Nojun Kwak,et al. Input Feature Selection for Classification Problems[ J ]. IEEE Transaction on Neural Network ,2002,13 : 143-157.
  • 10Ming Dong,Ravi Kothari. Feature Subset Selection Using a New Definition of Classifiability [ J ]. Pattern Recognition Letters ,2003,24 :1215-1225.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部