期刊文献+

透光脉动检测仪研究碱度对絮体形成、破碎及再生的影响 被引量:2

Study on the influence of alkalinity on floc formation,breakup and regrowth by photometric dispersion analyzer
原文传递
导出
摘要 为了解碱度对絮体的形成、破碎及再生过程的影响,采用PDA2000型透光脉动检测仪测定不同碱度下投加硫酸铝时高岭土悬浮液的絮凝指数(FI指数),并以强度因子和再生因子评价絮体的强度和再生能力。结果表明,碱度的高低在很大程度上会影响絮体的形成、破碎及再生过程,所形成絮体的颗粒随碱度的增加而减小。混凝剂投量和碱度高低共同决定了絮体的抗破碎强度,碱度越高,混凝剂投量越大,絮体的强度越高。在电中和作用下形成的絮体在低碱度下经一次破碎后恢复程度接近100%,在网捕卷扫作用下形成的絮体,无论碱度高低,从第2次破碎起,FI指数均以大于10%的幅度逐次下降,絮体不可恢复程度显著增大。 In order to find the influence of alkalinity on the formation,breakup and regrowth of flocs,photometric dispersion analyzer (model PDA2000) is applied to investigate flocculation index (FI index) of flocs formed by kaolin suspension with aluminum.The strength factor and the regrowth factor are used to evaluate the flocs strength and the regrowth of broken flocs.The results shows that the formation,breakup and regrowth process of flocs are affected by alkalinity to a great extent,and the floc particle diameters reduce with the increase of alkalinity.The flocs strength is determined by both coagulant dosage and alkalinity.The flocs strength becomes higher,when higher alkalinity and more coagulant dosage are added.The regrowth degree of flocs formed mainly with charge neutrality action is approached about 100% in the first breakup process under low alkalinity.For the flocs resulted mainly from sweep coagulation action,the FI index is reduced with more than 10% degree each time from the second breakup process and the flocs strength is reduced remarkably without relation to alkalinity.
出处 《光学技术》 CAS CSCD 北大核心 2010年第3期474-478,共5页 Optical Technique
基金 国家自然科学基金项目(50678007) 国家水体污染控制与治理科技重大专项(2008ZX07422-005)资助
关键词 透光脉动检测仪 碱度 絮体 破碎 再生 FI指数 photometric dispersion analyzer alkalinity flocs breakup regrowth FI index
  • 相关文献

参考文献13

  • 1MeCurdy K, Carlson K, Gregory D. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants[J]. Water Research, 2004, 38: 486.
  • 2Yukselen M A, Gregory J. The effect of rapid mixing on the break-up and re-formation of flocs [J]. Journal of Chemical Technology and Biotechnology, 2004, 79: 782.
  • 3Spicer P T, Pratsins S E. Shear-induced flocculation., the evolution of floc structure and the shape of the size distribution at steaty state[J]. Water Research, 1996, 30 (5): 1049.
  • 4Blanco A, Negro C, Fuente E, et al. Effect of shearing forces and floceulant overdose on filler flocculation mechanisms and floe properties[J]. Ind. Eng. Chem. Res., 2005, 44: 9105.
  • 5武若冰,王东升,李涛.絮体性能及其工艺调控的研究与进展[J].环境科学学报,2008,28(4):593-598. 被引量:11
  • 6Soos M, Moussa A S, Ehrl L, et al. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank[J]. Journal of Colloid and Interface Science, 2008, 319; 577.
  • 7Yukselen M A, Gregory J. The reversibility of floc breakage[J]. Int. J. Miner. Process, 2004, 73: 251.
  • 8Solomentseva I, Barany S, Gregory J. The effect of mixing on stability and break-up of aggregates formed from aluminum sulfate hydrolysis products[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 298: 34.
  • 9俞文正,杨艳玲,卢伟,李圭白.低温条件下絮体破碎再絮凝去除水中颗粒的研究[J].环境科学学报,2009,29(4):791-796. 被引量:16
  • 10Jaevis P, Jefferson B, Parsons S A. Breakage, regrowth, and fractal nature of natural organic matter flocs, Environmental Seience Technology[J]. Environ. Sci. Technol., 2005, 39: 2307.

二级参考文献18

  • 1Chaignon V, Lartiges B S, E1 Samrani A, et al. 2002. Evolution of size distribution and transfer of mineral particles between flocs in activated sludges: an insight into floc exchange dynamics[ J]. Water Res,36:676--684.
  • 2Chakraborti R K, Atkinson J F, Vanbenschoten J E. 2000. Characterization of Alum floc by image analysis [ J ]. Environ Sci Technol, 34 : 3969--3976.
  • 3Clark M M, Flora J R V. 1991. Floc restructuring in varied turbulent mixing[J]. J Colloid Interface Sci,147:407--421.
  • 4Jarvis P, Jefferson B, Parsons S A. 2005. Breakage, regrowth, and fractal nature of natural organic matter flocs [ J ]. Environ Sci Technol,39 : 2307--2314.
  • 5Jarvis P, Jefferson B,Parsons S A. 2003. The duplicity of floc strength [A]. Proceedings of the Nano and Micro Particles in Water and Wastewater Treatment Conference [ C ]. International Water Association: Zurich. Switzerland.
  • 6Kobayashi M, Adachi Y,Ooi S. 1999. Break up of Fractal Flocs in a Turbulent Flow [ J]. Langmuir, 15 : 4351--4356.
  • 7Li T,Zhu Z, Wang D, et aL 2007. The strength and fractal dimension characteristics of alum-kaolin flocs [ J ]. Int J Miner Process, 82 : 23 --29.
  • 8Li T,Zhu Z,Wang D, et al. 2006. Characterization of floc size, strength and structure under various coagulation mechanisms [ J ]. Powder Technology, 168 : 104--110.
  • 9Li X,Logan B E. 1997. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid [ J ]. Environ Sci Technol,31 : 1237--1242.
  • 10McCurdy K, Carlson K, Gregory D. 2004. Floc morphology and cyclic shearing recovery : comparison of alum and poly - aluminum chloride coagulants[ J]. Water Res, 38:486--494.

共引文献26

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部