期刊文献+

Permanence and Global Attractivity of a Discrete Semi-Ratio-Dependent Predator-Prey System with Holling Ⅳ Type Functional Response 被引量:3

Permanence and Global Attractivity of a Discrete Semi-Ratio-Dependent Predator-Prey System with Holling Ⅳ Type Functional Response
下载PDF
导出
摘要 In this paper, we investigate a discrete semi-ratio dependent predator-prey system with Holling IV type functional response. For general nonautonomous case, sufficient conditions which ensure the permanence and the global stability of the system are obtained. Meanwhile, we discuss the existence of the positive periodic solution and global stability of the system. In this paper, we investigate a discrete semi-ratio dependent predator-prey system with Holling IV type functional response. For general nonautonomous case, sufficient conditions which ensure the permanence and the global stability of the system are obtained. Meanwhile, we discuss the existence of the positive periodic solution and global stability of the system.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期442-450,共9页 数学研究与评论(英文版)
基金 Supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of China (Grant Nos. 11531428 11521306)
关键词 DISCRETE periodic solution PERMANENCE global stability. discrete periodic solution permanence global stability.
  • 相关文献

参考文献12

  • 1CHEN Fengde. Permance and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems [J]. Appl. Math. Comput., 1991, 59: 804-814.
  • 2FAN Meng, WANG Qian. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems [J]. Discrete Contin. Dyn. Syst. Ser. B, 2004, 4(3): 563-574.
  • 3FAN Meng, WANG Ke. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Math. Comput. Modelling, 2002, 35(9-10): 951-961.
  • 4DAI Binxiang, ZOU Jiezhong. Periodic solutions of a discrete-time nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J]. J. Appl. Math. Comput., 2007, 24(1-2): 127-139.
  • 5HUO Haifeng, LI Wantong. Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model [J]. Math. Comput. Modelling, 2004, 40(3-4): 261-269.
  • 6YANG Xitao. Uniform persistence and periodic solutions for a discrete predator-prey system with delays [J]. J. Math. Anal. Appl., 2006, 318(i): 161-177.
  • 7FAN Yonghong, LI Wantong. Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response [J]. J. Math. Anal. Appl., 2004, 9.99(2): 357-374.
  • 8WANG Qian, FAN Meng, WANG Ke. Dynamics of a class of nonautonornous semi-ratio-dependent predatorprey systems with functional responses JONES B. On a class of singular integrals [J]. Amer. J. Math., 1964, 86: 441-462. J. Math. Anal. Appl., 2003, 278(2): 443-471.
  • 9ARROWSMITH D K, PLACE C M. Dynamical Systems: Differential Equations, Maps and Chaotic Behaviour [M]. Chapman & Hall, London, 1992.
  • 10BELTRAMI E. Mathematics for Dynamical Modelling [M]. Academic Press, Boston, MA., 1987.

同被引文献17

  • 1王继华,曾宪武.一类具有简化Holling Ⅳ类功能反应的捕食-食饵模型的定性分析[J].数学杂志,2004,24(6):701-704. 被引量:20
  • 2陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 3肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2008:41-50.
  • 4Z. Amine, R. Ortega. A periodic predator-prey system [J]. Journal of Mathematical Analysis and Applications, 1994(185) :477-489.
  • 5Lakshmi Narayan Guin,Prashanta Kumar Mandal. Spatiot emporal dynamics of reaction-diffusion models of interact- ing populations [J]. Applied Mathematical Modelling, 2014,38(17-18) :4 417-4 427.
  • 6Murry J D. Mathematical biology[M]. New York: Spring- er-Verlag, 1989.
  • 7M Fan, Q Wang,X Zou. Dynamics of a non-autono-mous ratio-dependent predator-prey system[J]. Proc. Roy. Soc. Edinburgh Sect. A, 2003,133 : 97-118.
  • 8T K Kar, S Misra, B Mukhopadhyay. A bio-economic model of a ratio-dependent predator-prey system and op- timal harvesting [J]. Journal of Applied Mathematics and Computing, 2006,9 (11) : 387-401.
  • 9R Arditi, L R Ginzburg. Coupling in predator-prey dynam ies:Ratio-dependenee[J]. Theret. Biol, 1989,139:1 123- 1 128.
  • 10H R Akcakaya, R Arditi, L R Ginzburg. Ratio-depen-dent predation,An abstraction that works[J]. Ecology, 1995, 76:995-1 004.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部