期刊文献+

Local Solvability of Cauchy Problem for Kaup-Kupershmidt Equation

Local Solvability of Cauchy Problem for Kaup-Kupershmidt Equation
下载PDF
导出
摘要 This paper deals with the local solvability of initial value problem for Kaup-Kupershmidt equations. Indeed, using Bourgain method, we prove that the Cauchy problem of Kaup-Kupershmidt equation is local well-posed in H8 whenever s 〉 9/8, which improves the former results in [5]. This paper deals with the local solvability of initial value problem for Kaup-Kupershmidt equations. Indeed, using Bourgain method, we prove that the Cauchy problem of Kaup-Kupershmidt equation is local well-posed in H8 whenever s 〉 9/8, which improves the former results in [5].
机构地区 School of Mathematics
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期543-551,共9页 数学研究与评论(英文版)
基金 Supported by the Scientific Research Projects of Zhejiang Province Science & Technology Department (Grant No. 2008C13068) Scientific Research Projects of Zhejiang Ocean University (Grant Nos. 21065030608 X08M014)
关键词 Kaup-Kupershmidt equation initial value problem local well-posed. Kaup-Kupershmidt equation initial value problem local well-posed.
  • 相关文献

参考文献1

二级参考文献20

  • 1Kaup, D. J.: On the inverse scattering for cubic eigenvalue problems of the class equations. Stud. Appl. Math., 62, 189-195 (1980).
  • 2Kupershmidt, B. A.: A super Korteweg-de-Vries equatons: an integrable system. Physics Letters, A, 102,213-218 (1994).
  • 3Benilov, E. S., Grimshaw, R. and Kuznetsova, E. P.: Dressing method Darboux transformation and generalized restrict ed flows for the KdV hierarchy. Physica D, 169, 270 (1993).
  • 4Grimshaw, R. and Pavlov, M.: Exact periodic steady solutions for nonlinear wave equations: A new approach. Physics Letters A, 251(4). 25-30 (1999).
  • 5Hunter, J. K. and Scheurle, J.: Existence of perturbed solitary wave solutions to a model equation for water waves. Physica D, 32, 235-268 (1988).
  • 6Hu, X., Wang, D. and Qian, X.: Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation. Physics Letters, A, 262(15), 409-415 (1999).
  • 7Boyd, J. P.: Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation. Physica D, 48(2), 129-146 (1991).
  • 8Buffoni, B, Champneys, A. R. and Toland, J. F.: Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system. J. Dyn. Diff. Eq., 8, 221-123 (1996).
  • 9Champneys, A. R, and Groves, M. D.: A global investigation of solitary-wave solutions to a two-parameter model for water waves. J. Fluid. Mech., 342, 199- 222 (1997).
  • 10Champneys, A. R. and Toland, ,J. F.: Hunting for homoclinic orbits in reversible systems: a shooting technique. NorHinearity, 6, 665-671 (1993).

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部