期刊文献+

The New Upper Bounds of Some Ruzsa Numbers R_m

The New Upper Bounds of Some Ruzsa Numbers R_m
下载PDF
导出
摘要 For A Zm and n ∈ Zm, let σA(n) be the number of solutions of equation n =x + y, x, y ∈ A. Given a positive integer m, let Rm be the least positive integer r such that there exists a set A Zm with A + A = Zm and σA(n) ≤ r. Recently, Chen Yonggao proved that all Rm ≤ 288. In this paper, we obtain new upper bounds of some special type Rkp2. For A Zm and n ∈ Zm, let σA(n) be the number of solutions of equation n =x + y, x, y ∈ A. Given a positive integer m, let Rm be the least positive integer r such that there exists a set A Zm with A + A = Zm and σA(n) ≤ r. Recently, Chen Yonggao proved that all Rm ≤ 288. In this paper, we obtain new upper bounds of some special type Rkp2.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期557-561,共5页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant Nos. 10901002 10771103)
关键词 Erdos-Turan conjecture additive bases Ruzsa numbers. Erdos-Turan conjecture additive bases Ruzsa numbers.
  • 相关文献

参考文献9

  • 1CHEN Yonggao. The analogue of Erdes-Turgm conjecture in Zm [J]. J. Number Theory, 2008, 128(9): 2573-2581.
  • 2CHEN Yonggao. A problem on unique representation bases [J]. European J. Combin., 2007, 28(1): 33-35.
  • 3ERDOS P. On the multiplicative representation of integers [J]: Israel J. Math., 1964, 2: 251-261.
  • 4ERDOS P, TURAN P. On a problem of Sidon in additive number theory, and on some related problems [J]. J. London Math. Soc., 1941, 16: 212-215.
  • 5NATHANSON M B. Unique representation bases for the integers [J]. Acta Arith., 2003, 108(1): 1-8.
  • 6PUS V. On multiplicative bases in abelian groups [J]. Czechoslovak Math. J., 1991, 41(2): 282-287.
  • 7RUZSA I Z. A just basis [J]. Monatsh. Math., 1990, 109(2): 145-151.
  • 8TANG Min, CHEN Yonggao. A basis of Zm [J]. Colloq. Math., 2006, 104(1): 99-103.
  • 9TANG Min, CHEN Yonggao. A basis of Zm (II) [J]. Colloq. Math., 2007, 108(1): 141-145.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部