期刊文献+

改进的FastICA在盲图像分离中的应用 被引量:3

Application of blind image separation based on improved FastICA algorithm
下载PDF
导出
摘要 盲源分离(BSS)是信号处理领域的一个热点问题。独立分量分析(ICA)是一种基于高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,已广泛应用于信号处理领域。为了有效地对混合图像进行盲源分离,介绍了一种基于改进的快速固定点算法(FastICA),对经过随机线性混合后的模糊图像进行盲源分离。仿真结果显示,该算法可以很有效地对线性混合图像进行盲源分离。 Blind source separation(BSS)was a hot point of signal processing. Independent component analysis (IGA) was widely used in signal processing, which is a signal analysis method based on signal's high order cumulants, it can lind out the latent independent components in data. This paper introduce an improved fast fixed-point independent component analysis algorithm(FastlCA), used to separate random mixed images. As the final, a good result was obtained through emulating with MATLAB.
出处 《国外电子测量技术》 2010年第5期70-72,共3页 Foreign Electronic Measurement Technology
关键词 独立分量分析 盲源分离 快速固定点算法 independent component analysis blind source separation fast fixed-point ICA
  • 相关文献

参考文献10

二级参考文献87

共引文献28

同被引文献31

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部