期刊文献+

基于核函数的支持向量机样本选取算法 被引量:5

Sample selection algorithm based on kernel function in support vector machine
下载PDF
导出
摘要 使用支持向量机求解大规模数据分类需要较大内存来存储Hessian矩阵,而矩阵的大小则依赖于样本数,因此在一定程度上导致支持向量机分类效率及质量难以提高。考虑到只有成为支持向量的样本才对决策函数起作用,为了减少训练样本时所需空间及时间开销,提高支持向量机分类效率与质量,提出了一种基于核函数的样本选取算法。该算法通过选取最大可能成为支持向量的样本,以达到减少训练时存储Hessian矩阵所需空间及时间开销的目的。实验结果表明,该算法所筛选出的样本不仅可以提高样本训练准确率,而且可以提高分类计算速度和减少存储空间开销。 Using support vector machines to solve large-scale data classification needs rather more memory to store Hessian matrix whose size depends on the size of sample,to some extent,it is difficult to improve the classification efficiency and quality of support vector machine.Taking into account that only a support vector of the sample should be play a role in decision-making function,in order to reduce the space and time required while training samples,improve the efficiency and quality of support vector machine classification,a support vector sample selection algorithm based on kernel function is presented.The most likely support vector is selected from samples to reduce training requirements for time and space of storage Hessian matrix.Experiments show the algorithm not only can improve the accuracy of the training,but also increase the computing speed and reduce storage space.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第10期2266-2269,共4页 Computer Engineering and Design
基金 广东省科技计划基金项目(2009B010800036) 广东省教育科研基金项目(BKYBJG20060235)
关键词 支持向量 样本选取 核函数 结构风险 支持向量机 support vector sample selection kernel function structural risk support vector machine
  • 相关文献

参考文献11

  • 1Vapnik V.The nature of statistical learning theory[M].New York: Spring-Verlag, 1995.
  • 2Cortes C, Vapnik V. Suport vector networks [J]. Machine Learning, 1995,20:273-297.
  • 3Osuna E,Freund R,Girosi F.An improvend trainging algorithm for support vector machines[C].Nerual Networks for Signal Processing Ⅶ-Proceedings of the 1997 IEEE Workshop, 1997: 276-285.
  • 4Platt J.Fast traing of support vector machines using sequential minimal optimization[C].Advances in Kernel Methods-Support Vector Learing.MIT Press, 1999:185-208.
  • 5罗瑜,易文德,王丹琛,何大可.大规模数据集下支持向量机训练样本的缩减策略[J].计算机科学,2007,34(10):211-213. 被引量:13
  • 6田新梅,吴秀清,刘莉.大样本情况下的一种新的SVM迭代算法[J].计算机工程,2007,33(8):205-207. 被引量:4
  • 7Lee Y, Mangasarian O L.RSVM:Reduced support vector machines[C].San Jose,CA:Proc of the SIAM International Conference on Data Mining,2001.
  • 8Almeida M B,Braga A P, Braga J P.SVM-km:Speeding SVMs learning with a priori cluster selection and K-means[C].Proc of the 6th Brazilian Symposium on Neural Networks, 2000:162-167.
  • 9Shin H,Cho S.Neighborhood property based pattern selection for support vector machines [J]. Neural Computation, 2007,19 (3): 816-855.
  • 10Schohn G,Cohn D.Less is more:Active learning with support vector machines[C].Proceedings of the 17th International Conference on Machine Leaming.IEEE Press,2000:839-846.

二级参考文献25

  • 1Vapnic V. The nature of statistical learning thedry [C]. [S. l.]: Springer-Verlag,1995.
  • 2Cortes C, Vapnic V. Support vector networks[J]. Machine Learning, 1995,20 : 1-25.
  • 3Pontil, Verri. Proporties of support vector machines[J]. Neural Computation, 1998,10: 955-974.
  • 4Vapnic V. Estimation of dependences based on em pirical data[C]. [S. l.]:Springer-Verlag, 1982.
  • 5Osuna, Girosi. Reducing the run-time complexity of support vector machines[C]. [S. l.]: To appear in ICPR' 98,1998.
  • 6Amari Wu. Improve support vector machines classifiers by modifying kernel/unctions[J]. Neural Network, 1999,12 : 783-789.
  • 7Barzilay, Brailovsky. On domain knowledge and feature selection using a support vector machine [J]. Pattern Recognition Letters, 1999, 20: 475- 484.
  • 8Barzilay, Brailovsky, Shahave. On global, local, mixed and neighborhood kernels for support vector machines [J]. Pattern Recognition Letters, 1999, 20:1 183-1 190.
  • 9Platt J C. Fast training of support vector machines using sequential minimal optimization[C]. In: Advances in Kernel Methods: Support Vector Machines, B. Scholkopf, C. Burges, and A. Smola, Eds. Combridge, MA : MIT Press, 1998.
  • 10Keerthi S, Shevsde S, Bhattacharyya C, et al. A fast iterative nearest point algorithm for support vector machine classifier design[J]. IEEE Trans. Neural Network,2000, (11): 124-136.

共引文献17

同被引文献41

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部