摘要
The domain size of spiral waves is an important issue in studies of two-dimensional (2D) spatiotemporal patterns. In this work, we use the 2D complex Ginzburg-Landau equation (CGLE) as our model and find that an initially big spiral can successfully transfer to several small spirals by applying a pulse array method. The impacts of several important factors, such as array density, controlling intensity and pulsing time, are investigated. This control approach may be useful for the control of 2D spatiotemporal patterns and has potential applications in the control of some realistic systems, such as meteorological and cardiac systems.
The domain size of spiral waves is an important issue in studies of two-dimensional (2D) spatiotemporal patterns. In this work, we use the 2D complex Ginzburg-Landau equation (CGLE) as our model and find that an initially big spiral can successfully transfer to several small spirals by applying a pulse array method. The impacts of several important factors, such as array density, controlling intensity and pulsing time, are investigated. This control approach may be useful for the control of 2D spatiotemporal patterns and has potential applications in the control of some realistic systems, such as meteorological and cardiac systems.