期刊文献+

带有时间变量和分布时滞的多时间刻度的竞争神经网络的指数稳定(英文) 被引量:1

Exponential stability of multitime scale competitive neural networks with time-varying and distributed delays
下载PDF
导出
摘要 介绍了带有时间变量和分布时滞的竞争神经网络,研究了该网络的指数稳定.利用非光滑分析技术,证明了该系统平衡点的存在唯一性.通过运用分析方法、不等式技术,取得了该系统平衡点的指数稳定. In this paper, Time-varying and distributed delays are introduced into competitive neural networks and exponential stability for the neural network is investigated. Based on the nonsmooth analysis techniques, we prove the existence and uniqueness of equilibrium for system. By using this analysis method, inequality techniques, exponential stability of the equilibrium point are derived.
出处 《新疆大学学报(自然科学版)》 CAS 2010年第2期156-163,共8页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by The National Natural Science Foundation of P.R.China(60764003) The Major Project of The Ministry of Education of P.R.China(207130) The Scientific Research Programmes of Colleges in Xinjiang(XJEDU2007G01,XJEDU2006I05)
关键词 竞争神经网络 时间变量 指数稳定 非光滑分析 Competitive neural networks time-varying exponential stability nonsmooth analysis
  • 相关文献

参考文献11

  • 1Meyer-Baese A , Ohl F, Scheich H. Singular perturbation analysis of competitive neural networks with different timescales[J]. Neural Comput, 1996, 8:1731-1742.
  • 2Meyer-Baese A, Pilyugin S, Chen Y. Global exponential stability of competitive neural networks with different time scales[J]. IEEE Trans: Neural Networks, 2003, 14(3):716-719.
  • 3Mao Y. Multistability of competitive neural networks with different time scales[C], in: Communications, Circuits and Systems, 2005. Proceedings, 2005. International Conference on, 2005, 2:939-943.
  • 4Lu H, Shun-ichi A. Global exponential stability of multitime scale competitive neural networks with nonsmooth functions[J]. IEEE Trans: Neural Networks, 2006, 17(5):1152-11646.
  • 5Qi H, Qi L. Deriving sufficient conditions for global asymptotic stability of delayed neural networks via nonsmooth analysis[J]. IEEE Trans: Neural Networks, 2004, 15(1):99-109.
  • 6Qi H, Qi L, Yang X. Deriving sufficient conditions for global asymptotic stability of delayed neural networks via nonsmooth analysis-Ⅱ[J]. IEEE Trans: Neural Networks, 2005, 16(6):1701-1706.
  • 7Rockafellar R T, Wets R J B. Variational Analysis[M]. Berlin, Germany: Spring-Verlag, 1998.
  • 8;] Clarke F H. Optimization and Nonsmooth Analysis[M]. New York: Wiley 1983.
  • 9Pourciau B H. Hadamard theorem for locally Lipschitzian maps[J]. J Math Anal Appl, 1982, 85:279-285.
  • 10Kuang J. Applied inequalities[M]. Shandong: Shandong Science and Technology Press, 2004.

同被引文献8

  • 1赵洪涌,王广兰.具有变时滞Hop field神经网络的概周期解存在性与全局吸引性[J].数学物理学报(A辑),2004,24(6):723-729. 被引量:11
  • 2桂江生,应义斌.混沌理论及其在建立神经网络模型中的应用[J].生物数学学报,2005,20(4):463-468. 被引量:5
  • 3杨建刚.人工神经网络实用教程[M].杭州:杭州大学出版社,1995.
  • 4A. Meyer - Basese, S.S. Pilyugin, Y. Chen. Global exponential stability of competitive neural networks with different time scales[J]. IEEE Trans. Neural Networks, 2003, 14:716 -719.
  • 5H.T. Lu, Z. He. Global exponential stability of delayed competitive neural networks with different time scales[ J]. Neural Networks, 2005, 18:243 -250.
  • 6H. Lu, A. Shun - ichi. Global exponential stability of multitime scale competitive neural networks with nonsmooth functions[J]. IEEE Trans: Neural Networks, 2006, 17(5) : 1152 -11646.
  • 7Qiu J. Exponential stability of impulsive neural networks with time - varying delays and reaction - diffusion terms. Neu- rocomputing 70 ( 2007 ) : 1102 - 1108.
  • 8J. G. Lu. Global exponential stability and periodicity of reaction - diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos, Solitions and Fractals, 35 (2008) : 116 - 125.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部