期刊文献+

二代小波变换在肌电信号消噪中的应用 被引量:1

The Application of Second Generation Wavelet Transform in the De-noising of the SEMG
下载PDF
导出
摘要 为了更好地消除混杂在表面肌电信号中的噪声,提出了一种基于二代小波变换的表面肌电信号消噪方法。利用提升算法进行表面肌电信号二代小波分解,得到多层的信号高频细节系数,分别运用软、硬阈值进行处理,对滤波后的信号进行小波重构,恢复消噪后的原始信号。通过对加噪正弦信号和真实表面肌电信号的消噪实验,结果表明:二代小波是一种明显优于一代小波的消噪方法,且硬阈值法优于软阈值法。 To eliminate the noise mixed in the surface electromyography, a de-noising method based on second generation wavelet transform is presented. Firstly, high frequency detail coefficients of multilayer signals are obtained by the second wavelet decomposition through lifting algorithm. Then the signals are filtered using soft threshold and hard threshold separately. Finally, the original signal eliminated noise is resumed by reconstructing fdtered detail coefficient. The de- noising experiments of standard noise adding sine signal and real surface electromyography are carried on. The results show that the second generation wavelet de-noising method is better than the first generation one, the hard threshold method is better than the soft threshold method.
出处 《计量学报》 CSCD 北大核心 2010年第3期260-264,共5页 Acta Metrologica Sinica
基金 国家”863”计划(2008AA042212) 国家自然科学基金(60705010 60874102)
关键词 计量学 消噪 二代小波 表面肌电信号 Metrology De-noising The second generation wavelet Surface eleetromyography
  • 相关文献

参考文献10

  • 1罗志增,席旭刚.一种表面肌电信号测试电路设计[J].测试技术学报,2007,21(1):33-38. 被引量:12
  • 2吴小鹰,侯文生,郑小林,王洪,查敏.上臂表面肌电信号与肘关节角度的相关性研究[J].航天医学与医学工程,2007,20(4):259-263. 被引量:8
  • 3Mallat S,Hwang W L.Singularity detection and processing with wavelets[J].IEEE Transactiona on Inform Theory,1992,38(2):617-643.
  • 4Xu Y S.Wavelet transform domain filters:a spatially selective noise filtration technique[J].IEEE Transactions on Image Processing,1994,3(6):747-758.
  • 5Donoho D L.De-noising by soft-thresholding[J].IEEE Transactions on Inform Theory,1995,41(3):613-627.
  • 6Sweldems W.The lifting scheme:A construction of second generation wavelets[J].SIAM Journal on Mathematical Analysis,1996,29(2):511-546.
  • 7Xiao D S,Cheng K Z,Donald M H,et al.Second generation wavelet transform for data de-noising in PD Measurement[J].IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(6):1460-1464.
  • 8王学伟,胡令彬.采用第二代小波变换的功率测量方法[J].计量学报,2008,29(1):73-76. 被引量:14
  • 9Daubechies I,Swedens W.Factoring wavelet Transforms into lifting steps[J].Journal on Fourier Analysis,1998,4(3):39-54.
  • 10黄宜军,汪金友.小波分析在微弱信号测量中的应用研究[J].计量学报,2007,28(2):163-166. 被引量:15

二级参考文献26

共引文献45

同被引文献18

  • 1钟家强,王润生.基于独立成分分析的多时相遥感图像变化检测[J].电子与信息学报,2006,28(6):994-998. 被引量:30
  • 2Sayeed Ud Doulah A B M, lqbal A, Jumana M A. ALS Disease Detection in EMG Using Time-Frequency Method [ C ]// Inlormatics,Electronics and Vision ( ICIEV), 2012 International Conference on IEEE ,2012:648-651.
  • 3Rong W, Tong K Y, Hu X L, et ah Combined Electromyography ( EMG )-Driven Robotic System with Functional Electrical Stimulation ( FES ) for Rehabilitation [ C ]//Bioengineering Conference(NEBEC) ,2012 38th Annual Northeast. IEEE,2012: 313-314.
  • 4Lovell G A, Blanch P D, Barnes C J. EMG of the Hip Adductor Muscles in Six Clinical Examination Tests[ J]. Physical Therapy in Sport,2012,13 (3) : 134-140.
  • 5Zhang F, D'Andrea S E, Nunnery M J, et al. Towards Design of a Stumble Detection System for Artificial Legs [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011,19(5) :567-577.
  • 6Chang S S, De Luea C J, Nawab S H. Aliasing Rejection in Precision Decomposition of EMG Signals [ C ]//Engineering in Medicine and Biology Society,2008. EMBS 2008.30th Annual In- ternational Conference of the IEEE. IEEE,2008:4972-4975.
  • 7Daubechies I, Sweldens W. Factoring Wavelet Transforms into Lifting Steps [ J ]. Journal of Fourier Analysis and Applications, 1998,4( 3 ) :247-269.
  • 8Wang Y, Wang H, Liu L, et aX. An Improved Wavelet Threshold Shrinkage Algorithm for Noise Reduction of Heart Sounds [ C ]// 2010 International Conference on Electrical and Control Engineering ( ICEC E ). IEEE, 2010 : 5018-5021.
  • 9Jie G. Wavelet Threshold De-Noising of Power Quality Signals [ C ]//Fifth International Conference on Natural Computation, 2009. ICNC'09. IEEE.2009 .6 :591-597.
  • 10Van L D, Wu D Y, Chen C S. Energy-Efficient FastICA Implementation for Biomedical Signal Separation [ J ]. IEEE Transactions on Neural Networks,2011,22 ( 11 ) : 1809-1822.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部