期刊文献+

基于扩散信息素的蚁群聚类算法及应用

A Pheromone Diffusion based Ant Colony Clustering Algorithm and Applications
下载PDF
导出
摘要 本文提出一种基于扩散信息素模型的全局收敛蚁群聚类算法,设计新的信息素更新机制与概率转移机制,适用于复杂的数据集分析。实验结果表明,新算法在聚类效果上比基本的蚁群聚类算法有较明显的改善。最后将新算法应用于电信运营商的客户数据分析中,用于建立客户细分聚类模型,对复杂客户数据集进行分类,取得了较理想的效果。 This paper proposed a pheromone diffusion model based global converging ant colony clustering algorithm(PD-CACCA),which not only designs the pheromone renewing mechanism but also the probability transferring scheme.PD-CACCA is suitable for analysis of complex data set.Experimental results show that the PD-CACCA algorithm can achieve distinct improvements compared to basic ant colony clustering algorithms.At last,the PD-CACCA is applied to analyze the customer data set for telecom operators,for building customer clustering model which classifies the customers,and the application results are good.
出处 《微计算机信息》 2010年第15期173-175,共3页 Control & Automation
关键词 蚁群算法 聚类分析 信息素扩散模型 客户分类 ant colony algorithm clustering pheromone diffusion model customer classifying
  • 相关文献

参考文献9

  • 1DORIGO M. MANIEZZO V. COLORNI A. Ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26(1): 29-41.
  • 2DENEUBOURG J. L. GOSS S. FRANKS N. et al. The dynamics of collective sorting: robot-like ants and ant-like robots: Proc. of the 1st International Conference on Simulation of Adaptive Behavior: From Animals to Animals [C]. Paris: MIT Press, 1991: 356- 363.
  • 3LUMER E. FAIETA B. Diversity and adaptation in populations of clustering ants: Proc. of the 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animals [C]. Cambridge: MIT Press, 1994 : 49-58.
  • 4MONMARCHE N. SLIMANE M. VENTURINI G. On improving clustering in numerical databases with artificial ants [J]. Lecture Notes in Computer Science. 1999, 1647 : 626-635.
  • 5VITORINO R. JUAN J M. Self-organized stigmergic document maps: Environment as a mechanism for context learning: Proc. of the 1st International Conference on Metaheuristics, Evolutionary and Bio-Inspired Algorithms[C]. [S.l.] : [s.n.], 2002 : 284-293.
  • 6HANDL J. MEYER B. Improved ant-based clustering and sorting in a document retrieval interface[J]. Lecture Notes in Computer Science. 2002, 2439 : 913-923.
  • 7吴斌,郑毅,傅伟鹏,史忠植.一种基于群体智能的客户行为分析算法[J].计算机学报,2003,26(8):913-918. 被引量:46
  • 8曹波,苏一丹.基于蚁群聚类的top-N推荐系统[J].微计算机信息,2009(9):225-226. 被引量:6
  • 9黄国锐,曹先彬,王煦法.基于信息素扩散的蚁群算法[J].电子学报,2004,32(5):865-868. 被引量:76

二级参考文献24

  • 1Schafer J B, Konstan J, Riedl J.Recommender Systems in Ecommerce [C].Proceedings of the ACM Conference on Electronic Commerce, 1999
  • 2Sarwar B, Karypis G, Konstan J.et al.Analysis of Recommendation Algorithms for E-commerce [C].Proceeding of the ACM Conference on Electronic Commerce, 2000
  • 3Ramos ,V., Ahneida ,F. Artificial Ant colonies in Digital Image Habitats -A Mass Behavior Effect Study on Pattern Recognition[C]. In Workshop on Ant Algorithms (From Ant Colonies to Artificial Ants) .2000,113-116
  • 4Ramos V .,Pina ,P.D Muge ,F. Self-Organized data and image retrieval as a consequence of Inter-Dynamic Synergistic Relationships in Artificial Ant Colonies. 2002,253-262.
  • 5Lumer E.D.&Faieta B.(1994),Diversity and Adaptation in Populations of Clustering ants.ln Cliff , D .,Husbands, P., Meyer , J. and Wilson S. (Eds.),in From Animals to Animates 3 ,Proc. of the 3rd Int. Conf. on the Simulation of Adaptive Behavior. Cambridge, MA: The MIT Press/Bradford Books,1994.
  • 6黄光球,魏芳.基于贝叶斯动态预测模型的商品推荐方法[J].微计算机信息,2007,23(05X):133-134. 被引量:3
  • 7Bonabeau, Dorigo M,Theraulaz G. Inspiration for optimization from social insect behaviour. Nature,2000,406(6) :39-42.
  • 8Dorigo M, Bonabeau E, Theralulaz G. Ant algorithms and stigmergy. Future Generation Computer Systems, 2000, 16(8) : 851-871.
  • 9Stutzle T, Hoos H. MAX-MIN Ant systems. Future Generation Computer Systems, 2000, 16(8) :889-914.
  • 10Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems. New York: Oxford University Press, 1999.

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部