期刊文献+

针对QAP问题的改进型蚁群优化算法研究 被引量:2

Research on An Improved Ant Colony Algorithm For Solving QAP
下载PDF
导出
摘要 本文结合二次分配问题(quadratic assignment problem,QAP)的特点,通过分析传统蚂蚁算法在解决QAP问题时收敛过快,精度不高的缺点,提出一种以ACS(ant colony system)为基础的改进蚁群算法――信息素迭代累积ACS(ACS with accumu-lated pheromone by iteration,ACS_API)。新方法通过对定义启发式信息和信息素更新规则的改进,扩大了搜索空间,从而避免过早收敛,陷入局部最优解中。该算法已应用于QAP标准测试数据,并通过与另外两种先前提出的改进蚂蚁算法(HAS_QAP,ACO_GLS)的比较分析得出了它在算法精度和执行时间上的优势。 Through analyzing traditional ant algorithm's weakness of premature convergence and low precision and the features of QAP(quadratic assignment problem),this paper proposes an improved ant algorithm based on ACS(ant colony system),which is called ACS with accumulated pheromone by iteration(ACS_API).According to redefining heuristic information and improving updating rules,this new method avoids premature convergence and local optimal solutions by broadening its search space.Finally,the ACS_API is applied to standard test data of QAP.After compared with other two ant algorithms proposed before,the results show that ACS_API is superior to those two methods no mater in computing time or precision.
出处 《微计算机信息》 2010年第15期182-183,141,共3页 Control & Automation
关键词 蚁群系统 二次分配问题 启发式信息 信息素 ACS QAP heuristic information pheromone
  • 相关文献

参考文献5

  • 1张军,胡晓敏,罗旭耀.蚁群优化[M].北京:清华大学出版社,2007:171-173.
  • 2Y.Hani, L.Amodeo, F.Yalaoui, H.Chen. Ant colony optimization for solving an industrial layout problem [J]. European Journal of Operational Research, 2007, 183(2): 633-642.
  • 3韩莉,徐丽,党长河.基于并行蚁群算法的多机器人联盟组成[J].微计算机信息,2007,23(17):246-247. 被引量:2
  • 4Huang, B., Liu, N., Chandramouli, M.. A GIS Supported Ant Algorithm for the Linear Feature Covering Problem with Distance Constraints[J]. Decision Support Systems, 2006, 42(2): 1063-1075.
  • 5Gambardella, L.M., Taillard, E.D., Dorigo, M. Ant colonies for the QAP, Technical report IDISIA, 1997:4 - 97.

二级参考文献5

  • 1徐桂生,王巍,宗光华.多移动机器人协作系统地图数据库创建方法[J].微计算机信息,2005,21(09X):150-152. 被引量:2
  • 2Shehory,S Kraus.Task allocation via coalition formation among autonomous agents[A].ProcoflJCAI -95[C].LosAngeles,CA,USA:Morgan Kaufmann Publishers,1995.655-661.
  • 3M Dorigo,V Maniezzo,A Colorni.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996,26(1)29-41
  • 4I Foste.Designing and Building Parallel Programes.Addison-Weslley,Reading,MA,1994.381
  • 5丁滢颍,何衍,蒋静坪.基于蚁群算法的多机器人协作策略[J].机器人,2003,25(5):414-418. 被引量:32

共引文献19

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部