期刊文献+

基于分块和Lab颜色模型的字幕提取方法 被引量:4

Approach Based on Blocking and Lab Color Model for Caption Extraction in Video Frames
下载PDF
导出
摘要 视频中的文本是建立视频检索的—个重要线索,因为视频中的文本总是和视频帧相关,并且客观地描述了视频帧的主要内容。根据背景区域内像素颜色变化缓慢而背景和前景交汇处像素颜色变化剧烈的原理采用对视频帧的每一行像素进行分块的方法计算每一块的变化率来检测和定位文本区域;使用Lab颜色模型来二值化图像从而提取文本图像。实验数据表明该方法效果不错,有很好的应用前景。 Captions is an important clue for setting up video retrieval, because the captions are always relevant to the video frames and objectively descript the main contents of the video frames. In this paper, according to that the pixels's color of the background change slowly while the pixels's color of the junction of the background and foreground change quickly, using approach that blocking every row of the video frame and computing the changing rate of every blocks to realize caption detection and location. Using Lab color model to realize binary text extraction. Experiment results show this approach is promising and has a good application prospects.
出处 《微计算机信息》 2010年第17期198-200,共3页 Control & Automation
关键词 文本检测 文本定位 文本提取 块变化率 Lab颜色模型 二值化 text detection text location text extraction rate of block change Lab color model binaryzation
  • 相关文献

参考文献5

二级参考文献20

  • 1[1]Y Wang, Z Liu, J Huang. Multimedia content analysis using audio and visual information[J]. IEEE Signal Processing Magazine, 2000, 17(6):12~36
  • 2[2]R Lienhart, F Stuber. Automatic text recognition in digital videos[A]. In: Proceedings of ACM Multimedia, Boston, 1996.11~20
  • 3[3]Zhong Yu, Zhang Hongjiang, Jain Anil K. Automatic caption localization in compressed video[J]. Pattern Analysis and Machine Intelligence, 2000, 22(4):385~392
  • 4[4]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995
  • 5[5]M Schmidt. Identifying speaker with support vector networks[A]. In: Proceedings of Interface'96, Sydney, 1996
  • 6[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features[A]. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998.137~142
  • 7[7]Yuan Qi. Learning algorithms for video and audio processing: Independent component analysis and support vector machine based approaches[R].College Park: University of Maryland at College Park, LAMP-TR-056(CAR-TR-951), 2000
  • 8[8]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, 1997.130~136
  • 9[9]C J C Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining, and Knowledge Discovery, 1998, 2(2):121~167
  • 10[10]T M Cover. Geometrical and statistical properties of systems and linear inequalities with applications in pattern recognition[J]. IEEE Transactions on Electronic Computers, 1965, 14(3):326~334

共引文献65

同被引文献36

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部