期刊文献+

基于PCA和PNN的发动机故障诊断研究 被引量:3

Study of Automobile Engine Fault Diagnosis Based on PCA and PNN
原文传递
导出
摘要 本文提出了一种基于主成分分析(PCA)和概率神经网络(PNN)的故障诊断方法。该方法首先利用PCA分析建模消除变量之间的非线性关联,降低噪声的影响,在保证数据信息丢失最少的情况下,大大降低了原始数据空间的维数,然后利用概率神经网络对降维后的数据进行模式分类,最后结合某汽车发动机的故障诊断进行仿真研究。仿真结果表明,该方法是有效可行的。 In this paper,a fault diagnosis method based on principal component analysis(PCA)and probabilistic neural network(PNN)is proposed.Firstly,As an analyzing and modelling tool,PCA is introduced to eliminate nonlinear combination of the variables and decrease the influence of the noise,and it also decreases dimensions of the original variables under the condition that the missing of the data information is least.Then,the PNN is used to recognize the reduced data.Finally,this method is combined with the study of automobile engine fault diagnosis.The simulation result indicates that the method mentioned above is effective and feasible.
作者 李凤春
出处 《网络安全技术与应用》 2010年第6期58-60,共3页 Network Security Technology & Application
关键词 主成分分析 概率神经网络 故障检测 故障诊断 Principal Component Analysis Probabilistic Neural Network Fault Detection Fault Diagnosis
  • 相关文献

参考文献7

二级参考文献33

  • 1梁宾桥,王继宗,梁晓颖.高性能混凝土强度预测的神经网络-主成分分析[J].计算机工程与应用,2004,40(18):192-195. 被引量:13
  • 2李果,李学仁,何秀然.改进ART1神经网络在航空发动机故障诊断中的应用[J].微计算机信息,2005,21(09S):156-158. 被引量:21
  • 3袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1990.66-77.
  • 4Qin SJ, Li W, Yue HH. Recursive PCA for adaptive process monitoring [C]. Proc of IFAC World Congress, Bejing, P R China, 1999: 85-90.
  • 5Patton R J, Chen J. Observer-based fault detection and isolation: robustness and applications[J]. Contr Eng Practice. 1997, 5 (5) : 671 - 682.
  • 6Frank P M. Analytical and qualitative model-based faul03.28.t diagnosis a survey and some new results European Journal of Control, 1996,2 (1) : 6.
  • 7Raich AC, Cinar A, Statistical process monitoring and disturbance diagnosis in multivariate continuous processes [J]. AIChE J , 1996(42):995-1009.
  • 8Dunia R, Qin SJ. Joint diagnosis of process and sensor faults using principle component analysis [J].Control Engineering Practice ,1998(6):457-469.
  • 9Jackson JE, A user's guide to principle compoents[M]. Wiley, New York:1991.
  • 10Dorr R, Kratz F, Ragot J, et al, Detection, isolation, and identification of sensor faults in nuclear power plants[J]. IEEE Trans on Control Systems Technology, 1997,5(1) : 42-60.

共引文献148

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部