期刊文献+

基于不完全观测数据的多速率多传感器数据融合 被引量:9

Multirate multisensor data fusion based on missing measurements
下载PDF
导出
摘要 研究了一类时变线性动态系统,在不同传感器以不同采样率对同一目标进行观测,并且各个传感器的观测数据存在不规律丢失情况下,给出了一种有效的信息融合方法。该方法通过数学推导,将多速率传感器数据融合转化为单速率传感器数据融合问题,并采用修正的联邦Kalman滤波器进行状态估计。新算法不需要对状态或观测进行扩维,计算量适当,从而保证了算法的实时性。在观测数据丢失的时刻,采用外推的观测值代替错误的观测数据,从而避免了传统算法的发散。理论分析和仿真实验验证了算法的有效性。 A dynamic time-vary linear system is studied.An effective data fusion algorithm is presented in times of multiple sensors observing a single target with different sampling rates.The robustness of the algorithm in case of data missing is also considered,where measurements from each sensor are missing stochastically with certain probabilities.By technical processing,the multirate data fusion system is transformed into a single rate linear dynamic system.By use of the modified federated Kalman filter to the newly established system,the state estimation is obtained.The augmentation of state or measurement dimensions are avoided by use of the presented algorithm,and the real-time property is guaranteed.In times of measurements missing,the observation is replaced by the predicted one,and the divergence of the traditional Kalman filter is omitted.Theoretical analysis and simulation results show the effectiveness of the proposed algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第5期886-890,958,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60773044) 总装备部重点基金(9140A26010308BQ0178) 教育部创新团队支持计划资助课题
关键词 数据融合 状态估计 多速率系统 不完全观测 卡尔曼滤波 data fusion state estimation multirate system missing measurement Kalman filter
  • 相关文献

参考文献11

  • 1Liu B S,Yan L P,Shi H.State fusion estimation with missing measurements[C] ∥Proc.of the International Conference on Information Computing and Automation,2007.
  • 2Wang Z D,Daniel W C H,Liu X H.Variance-constrained filtering for uncertain stochastic systems with missing measurements[J].IEEE Trans.on Automatic Control,2003,48(7):1254-1258.
  • 3Hong L.Distributed filtering using set models[J].IEEE Trans.on Aerospace and Electronic Systems,1992,27(4):715-724.
  • 4Benveniste A,Nikoukhah R,Willsky A S.Multiscale system theory[J].IEEE Trans.on Circuits and Syatems-Ⅰ:Fundamental Theory and Applications,1994,41(1):2-15.
  • 5Fabrizio A,Luciano A.Filterbanks design for multisensor data fusion[J].IEEE Signal Processing Letters,2000,7(5):100-103.
  • 6Andrisani D,Gau C F.Estimation using a multirate filter[J].IEEE Trans.on Automatic Control,1987,32(7):653-656.
  • 7Lee D J,Tomizuka M.Multirate optimal state estimation with sensor fusion[C] ∥ Proc.of the American Control Conference,Denver,Colorado,2003:2887-2892.
  • 8Chen B S,Lin C W,Chen Y L.Optimal signal reconstruction in noisy filter bank systems:multirate Kalman synthesis filtering approach[J].IEEE Trans.on Signal Processing,1995,43(11):2496-2504.
  • 9Yan L P,Liu B S,Zhou D H.An asynchronous multirate multisensor information fusion algorithm[J].IEEE Trans.on Aerospace and Electronic Systems,2007,43(3):1135-1146.
  • 10Yan L P,Liu B S,Zhou D H.The modeling and estimation of asynchronous multirate multisensor dynamic systems[J].Aerospace Science and Technology,2006,10(1):63-71.

二级参考文献4

  • 1刘宝生.导航制导中的鲁棒图像匹配算法研究[D].北京:清华大学,2006.
  • 2Carlson N A. Federated square root filter for decentralized parallel processors[J]. IEEE Trans on Aerospace and Electronic Systems, 1990, 26(3): 517-525.
  • 3Chui C K, Chen G. Kalman Filtering: with Real-time Applications [M]. New York: Springer, 1999.
  • 4陶俊勇,邱静,温熙森,钱彦岭.自适应联合滤波模型及其在车载SINS/GPS组合导航系统中的应用[J].信息与控制,2000,29(2):168-172. 被引量:17

共引文献5

同被引文献118

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部