期刊文献+

两步聚类方法在考试作弊答案分类中的应用 被引量:2

Application of Twostep Cluster Analysis in Classifing Exam Cheating Answers
下载PDF
导出
摘要 本文首先对聚类分析的概念、形式、分类和应用做了简要介绍,其中重点介绍了两步聚类的原理和使用,然后用实证的方法研究两步聚类在考试作弊答案分类中的应用。实证表明:两步聚类能快速得出分类,将分类结果借助自编程序对作弊考生进行归类,其结果和人工分组的结果比对后完全一致。由此得出结论:用两步聚类辅助自编程序的方法进行作弊答案分类切实可行,快速而准确。 This paper briefly introduces the concept, form, classification and applications of Cluster Analysis, which highlights the principles and the use of Twostep cluster method. It uses empirical methods to specify the applications of TwoStep cluster in elassifing the exam cheating answers. The study show that the Twostep cluster method can quickly get the classification, then we use program to assist it to determine which group the candidates are divided into. By comparing the results between this method and traditional manual grouping method, we find the results are same.The final conclusion is that this method applies in classifing the cheating answers is practicable, fast and accurate.
作者 张泉慧
机构地区 北京语言大学
出处 《中国考试》 2010年第6期34-38,共5页 journal of China Examinations
关键词 聚类分析 两步聚类 作弊答案 Cluster Analysis Twostep Cluster Cheating Answer
  • 相关文献

参考文献2

  • 1Two Step Cluster Analysis. http://wwwl.uni-hamburg.de/RRZ/Software/SPSS/Algofith.120/, 2006.
  • 2卢文岱.SPSSforWindows统计分析[M].北京:电子工业出版社.2006.391-448.

共引文献3

同被引文献20

  • 1景天魁.社会网络分析:理论、方法与应用[M].北京:北京师范大学出版社.2009.
  • 2Meeyoung Cha, Hamed Haddadi,Fabr'icio Benevenuto, Krishna P Gummadi. Measuring User Influence in Twitter : The Million Follower Fallacy[C]. Proceedings of International Conference on Weblogs and Social Media, 2010.
  • 3Song X,Chi Y, Hino K,Tseng B. Identifying Opinion I.eaders in the Blogosphere[C]. Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, 2007.
  • 4Haewoon, Kwak, Changhyun Lee, Hosung Park, Sue, Moon. What is Twitter, a Social Network or a News Media? [C]. Proceedings of the 19th International Conference on World Wide Web, 2010.
  • 5Manuel Gomez-Rodriguez, Jure Leskovec, Andreas Krause. Inferring Networks of Diffusion and Influenee[J]. ACM Transaction on Knowledge discovery from Data, 2010,5 (4).
  • 6Even-Dar E, Shapira A. A note on Maximizing the Spread on Influence in Social Networks[C]. Proceedings of the 3rd International Workshop on Internet And Network Economics(WINE),2007.
  • 7Kacperski K, Hoyst J A. Phase Transition as a Persistent Feature of Groups with Leaders in Models of Opinion Formation[J]. Physica A, 2000, 287(3--4).
  • 8Kristina Lerman, Rumi Ghosh. Information Contagion: an Empirical Study of the Spread of News on Digg and Twitter Soeial Networks[J]. International Journal of Emergency Management, 2009,6 (3- 4).
  • 9Linton C Freeman. Centrality in Social Networks: Conceptual Clarification[J]. Social Networks, 1979,1.
  • 10John Scott. Social Network Analysis: A Handbook[M]. London: Sage Publications, 2000.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部