期刊文献+

超声波对铝合金熔体的有效细化区域 被引量:12

Efficient refining zone of ultrasonic sonication on the industrial aluminum alloy melt
下载PDF
导出
摘要 为了探讨凝固组织的超声细化区域范围,在液相线温度至575℃区间内对铝合金熔体施加超声振动,待铸锭冷却至室温,经腐蚀处理后观察其宏观和微观组织.试验结果表明,在工具杆端面位置处靠近铸锭边缘有一明显的作用区域分界线,分界线两端组织呈现截然不同的特征,端面以下组织均得到了有效的细化,而端面以上组织晶粒粗大,呈枝晶状分布.超声在熔体中产生空化和声流效应,理论计算表明,熔体中的有效空化范围为端面下30mm区域内,超声在熔体中产生的声流效应遍及整个熔体可流动区域,通过声流和空化的双重作用,工具杆端面以下的组织均受到超声的作用,并得到细化. In order to discuss the extent of grain refinement on the solidification structure,ultrasonic vibration was imposed on aluminum alloy melt during the liquid temperature and 575 ℃. The experimental results show that there is an obvious borderline in the area from the radiator′s face to the boundary of the ingot. The structure of one side of the borderline is absolutely different from the other′s. Structures below the radiator′s face are all well refined while those of the other side are coarse and of dendritic. Ultrasound induces cavitation and acoustic streaming in the melt. Calculation results indicate that the area of 30 mm below the radiator′s face is the efficient cavitation area in the melt. The acoustic streaming tranferes the effective nuclei and equiaxed grains from the cavitation area to other areas and brings the melt in those areas back,thus forming equiaxed grains and more effective nuclei. Subjected by the duple action of cavitation and acoustic streaming,the structures below the face are all refined at last.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2010年第2期149-153,共5页 Materials Science and Technology
基金 国家重点基础研究发展计划资助项目(2005CB23707)
关键词 功率超声 声压分布 空化范围 声流效应 凝固组织 有效作用区域 power ultrasound acoustic pressure distribution cavitation area acoustic streaming effect solidification structure efficient extent
  • 相关文献

参考文献13

  • 1张小明,张廷杰,田锋,李中奎,马光来,周建.多向锻造对改善7075铝合金性能的作用[J].稀有金属材料与工程,2003,32(5):372-374. 被引量:46
  • 2ESKIN G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys[ J]. Ultrasonics Sonochemistry,2001,8 (3) :319 - 325.
  • 3LIY L, FENG H K, CAO F R, et al. Effect of high density ultrasonic on the microstructure and refining property of Al-5Ti-0. 25C grain refiner alloy[ J]. Materials Science and Engineering A, 2008,487 ( 2 ) : 518 - 523.
  • 4LIU X, OSAWA Y, TAKAMORI S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration [ J ]. Materials Science and Engineering A,2008,487( 1 ) : 120 - 123.
  • 5大野笃美.金属的凝固理论、实践及应用[M].北京:机械出版社,1990..
  • 6范金辉,翟启杰.物理场对金属凝固组织的影响[J].中国有色金属学报,2002,12(z1):11-17. 被引量:64
  • 7JIAN X, XU H, MEEK T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy [ J ]. Materials Letters ,2005,59 (2) : 190 - 193.
  • 8马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究[J].材料科学与工程,1995,13(4):2-7. 被引量:63
  • 9ESKIN G I. Ultrasonic treatment of light alloy melts [ M]. Amsterdam:Gordon & Breach, 1998.
  • 10《超声波探伤》编写组.超声波探伤[M].北京:水利电力出版社,1985.

二级参考文献17

  • 1陈锋,何德坪,舒光冀.超声作用下Al-Fe合金化机制及Al-Fe合金的制备[J].东南大学学报(自然科学版),1993,23(5):58-62. 被引量:10
  • 2马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究[J].材料科学与工程,1995,13(4):2-7. 被引量:63
  • 3Ning Xinglong(宁兴龙).Rare Metal Materials and Engineer-ing(稀有金属材料与工程)[J],2001,30(5):330-330.
  • 4Wang Guohong(王国宏).Rare Metal Letters(稀有金属快报)[J],1998,3:1-1.
  • 5Eskin G I. Ultrasonic Sonochemistry[J], 2001, 8:319
  • 6ZhaoZhongxing(赵忠兴) BiJianzhi(毕鉴志) ZhengYi(郑一)etal.特种制造及有色金属,1999,1:13-13.
  • 7Maesiar, Harold, Pilarik. Giessereitechnik[J], 1985, 31 (7): 211
  • 8Abramov V O, Abramov O V, Straumal B Bet al. Materials and Design[J], 1997, 18(4): 323
  • 9Haruyki Nakanishi, Yoshiki Tsumekawa, Masairo Okumiy.Mater Trans[J], 1993, 34(1): 62
  • 10Eskin G I, Eskin D G. Ultrasonics Sonochemistry[J], 2003, 10: 297

共引文献180

同被引文献123

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部